Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 101, Issue 3, pp 859–863 | Cite as

Synthesis and thermal analysis of indium-based hydrotalcites of formula Mg6In2(CO3)(OH)16·4H2O

  • Ray L. Frost
  • Sara J. Palmer
  • Laure-Marie Grand
Article

Abstract

Insight into the unique structure of layered double hydroxides (LDHs) has been obtained using a combination of X-ray diffraction and thermal analysis. Indium containing hydrotalcites of formula Mg4In2(CO3)(OH)12·4H2O (2:1 In-LDH) through to Mg8In2(CO3)(OH)18·4H2O (4:1 In-LDH) with variation in the Mg:In ratio have been successfully synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 LDH to 8.15 Å for the 3:1 indium containing LDH. Distinct mass loss steps attributed to dehydration, dehydroxylation and decarbonation are observed for the indium containing hydrotalcite. Dehydration occurs over the temperature range ambient to 205 °C. Dehydroxylation takes place in a series of steps over the 238–277 °C temperature range. Decarbonation occurs between 763 and 795 °C. The dehydroxylation and decarbonation steps depend upon the Mg:In ratio. The formation of indium containing hydrotalcites and their thermal activation provides a method for the synthesis of indium oxide-based catalysts.

Keywords

Hydrotalcite synthesis Hydrocalumite Raman spectroscopy Indium 

Notes

Acknowledgements

The financial and infra-structure support of the Queensland Research and Development Centre (QRDC-RioTintoAlcan) and the Queensland University of Technology Inorganic Materials Research Program of the School of Physical and Chemical Sciences are gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation.

References

  1. 1.
    Choudhary VR, Jha R, Narkhede VS. In–Mg-hydrotalcite anionic clay as catalyst or catalyst precursor for Friedel–Crafts type benzylation reactions. J Mol Catal A. 2005;239:76–81.CrossRefGoogle Scholar
  2. 2.
    Gabrovska M, Edreva-Kardjieva R, Angelov V, Crisan D, Munteanu G, Vedrine J. Mg–Al and Mg–In oxide compounds as catalyst components for the oxidative dehydrogenation of propane. Part I. Preparation and characterization of the as-synthesized materials. Revue Roumaine de Chimie. 2007;52:521–5.Google Scholar
  3. 3.
    Li F, Jiang X, Evans DG, Duan X. Structure and basicity of mesoporous materials from Mg/Al/In layered double hydroxides prepared by separate nucleation and aging steps method. J Porous Mater. 2005;12:55–63.CrossRefGoogle Scholar
  4. 4.
    Xiang X, Wang H, Li F. Layered double hydroxides/carbon nanotube heterostructure material and its preparation by L-cysteine based assembly of layered double hydroxides. Beijing University of Chemical Technology, People’s Republic of China, Application, CN CN; 2007, 10 pp.Google Scholar
  5. 5.
    Yang W, Wang Y, Zhang X. Method for preparing MnO2/hydrotalcite inorganic nanosheet composite ultrathin film. Beijing University of Chemical Technology, People’s Republic of China, Application, CN CN; 2007, 16 pp.Google Scholar
  6. 6.
    Okada K, Mimura K, Nogi S. Synthesis of hydrotalcite-type layered compounds, M(II)1−xInx(OH)2(NO3)x·nH2O (M = Ni, Mg, Co, and Ca). Nendo Kagaku. 1994;34:40–7.Google Scholar
  7. 7.
    Swamy CS, Kannan S, Li Y, Armor JN, Braymer TA. Method for decomposing N2O utilizing catalysts comprising calcined anionic clay minerals. Air Products and Chemicals, Inc., USA, Application, EP EP; 1995, 19 pp.Google Scholar
  8. 8.
    Wang P, Li M, Chen H, Zhang W, Da Z, Tian H, Luo Y, Zong B, He M, Long J. Manufacture of cracking catalyst for hydrocarbon with desulfurization function. (China Petroleum and Chemical Corporation, People’s Republic of China, Research Institute of Petroleum Processing, China Petroleum and Chemical Corporation, Application, CN CN; 2005, 25 pp.Google Scholar
  9. 9.
    Duan X, Li F, Zou L. Method for manufacturing spinel nanoparticles with high specific surface area from lamellar precursor. Beijing University of Chemical Technology, People’s Republic of China, Application, CN CN; 2005, 6 pp.Google Scholar
  10. 10.
    Prihod’ko R, Sychev M, Kolomitsyn I, Stobbelaar PJ, Hensen EJM, van Santen RA. Layered double hydroxides as catalysts for aromatic nitrile hydrolysis. Microporous Mesoporous Mater. 2002;56:241–55.CrossRefGoogle Scholar
  11. 11.
    Weir MR, Kydd RA. Synthesis of heteropolyoxometalate-pillared Mg/Al, Mg/Ga, and Zn/Al layered double hydroxides via LDH-hydroxide precursors. Inorg Chem. 1998;37:5619–24.CrossRefGoogle Scholar
  12. 12.
    Altuntasoglu O, Unal U, Ida S, Goto M, Matsumoto Y. Characterization of self-assembled films of NiGa layered double hydroxide nanosheets and their electrochemical properties. J Solid State Chem. 2008;181:3257–63.CrossRefGoogle Scholar
  13. 13.
    Aramendia MA, Borau V, Jimenez C, Marinas JM, Romero FJ, Ruiz JR. Synthesis, characterization, and 1H and 71 Ga MAS NMR spectroscopy of a novel Mg/Ga double layered hydroxide. J Solid State Chem. 1997;131:78–83.CrossRefGoogle Scholar
  14. 14.
    Defontaine G, Michot LJ, Bihannic I, Ghanbaja J, Briois V. Synthesis of NiGa layered double hydroxides. A combined EXAFS, SAXS, and TEM study. 2. Hydrolysis of a Ni2+/Ga3+ solution. Langmuir. 2004;20:9834–43.CrossRefGoogle Scholar
  15. 15.
    Fuda K, Kudo N, Kawai S, Matsunaga T. Preparation of zinc/gallium-layered double hydroxide and its thermal decomposition behavior. Chem Lett. 1993; 5:777–80.Google Scholar
  16. 16.
    Aramendia MA, Borau V, Jimenez C, Marinas JM, Luque JM, Ruiz JR, et al. Synthesis and characterization of a novel Mg/In hydrotalcite-like compound. Mater Lett. 2000;43:118–21.CrossRefGoogle Scholar
  17. 17.
    Liu P, Zheng J-h, Pi Z-b, Qiao X–h. Synthesis and characterization of magnesium–aluminum–indium hydrotalcite-like compounds. Diqiu Kexue. 2003;28:163–6.Google Scholar
  18. 18.
    Allmann R. Crystal structure of pyroaurite. Acta Cryst. 1968;B24:972–7.Google Scholar
  19. 19.
    Ingram L, Taylor HFW. Crystal structures of sjoegrenite and pyroaurite. Mineral Mag. 1967;36:465–79.CrossRefGoogle Scholar
  20. 20.
    Taylor HFW. Crystal structures of some double hydroxide minerals. Mineral Mag. 1973;39:377–89.CrossRefGoogle Scholar
  21. 21.
    Rives V, editor. Layered double hydroxides: present and future. New York: Nova Science Publisher Inc.; 2001.Google Scholar
  22. 22.
    Brown G, Van Oosterwyck-Gastuche MC. Mixed magnesium-aluminum hydroxides. II. Structure and structural chemistry of synthetic hydroxycarbonates and related minerals and compounds. Clay Miner. 1967;7:193–201.CrossRefGoogle Scholar
  23. 23.
    Taylor HFW. Segregation and cation-ordering in sjogrenite and pyroaurite. Mineral Mag. 1969;37:338–42.CrossRefGoogle Scholar
  24. 24.
    Taylor RM. Stabilization of color and structure in the pyroaurite-type compounds iron(II) iron(III) aluminum(III) hydroxycarbonates. Clay Miner. 1982;17:369–72.CrossRefGoogle Scholar
  25. 25.
    Kloprogge JT, Wharton D, Hickey L, Frost RL. Infrared and Raman study of interlayer anions CO3 2−, NO−3, SO4 2− and CIO−4 in Mg/Al-hydrotalcite. Am Miner. 2002;87:623–9.Google Scholar
  26. 26.
    Frost RL, Hales MC, Martens WN. Thermogravimetric analysis of selected group (II) carbonate minerals—implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:999–1005.CrossRefGoogle Scholar
  27. 27.
    Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95:123–9.CrossRefGoogle Scholar
  28. 28.
    Carmody O, Frost R, Xi Y, Kokot S. Selected adsorbent materials for oil-spill cleanup. A thermoanalytical study. J Therm Anal Calorim. 2008;91:809–16.CrossRefGoogle Scholar
  29. 29.
    Frost RL, Locke A, Martens WN. Thermogravimetric analysis of wheatleyite Na2Cu2+(C2O4)2·2H2O. J Therm Anal Calorim. 2008;93:993–7.CrossRefGoogle Scholar
  30. 30.
    Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008;94:203–8.CrossRefGoogle Scholar
  31. 31.
    Frost RL, Locke AJ, Martens W. Thermal analysis of beaverite in comparison with plumbojarosite. J Therm Anal Calorim. 2008;92:887–92.CrossRefGoogle Scholar
  32. 32.
    Frost RL, Wain D. A thermogravimetric and infrared emission spectroscopic study of alunite. J Therm Anal Calorim. 2008;91:267–74.CrossRefGoogle Scholar
  33. 33.
    Hales MC, Frost RL. Thermal analysis of smithsonite and hydrozincite. J Therm Anal Calorim. 2008;91:855–60.CrossRefGoogle Scholar
  34. 34.
    Palmer SJ, Frost RL, Nguyen T. Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayer. J Therm Anal Calorim. 2008;92:879–86.CrossRefGoogle Scholar
  35. 35.
    Vagvoelgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.CrossRefGoogle Scholar
  36. 36.
    Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.CrossRefGoogle Scholar
  37. 37.
    Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.CrossRefGoogle Scholar
  38. 38.
    Zhao Y, Frost RL, Vagvolgyi V, Waclawik ER, Kristof J, Horvath E. XRD, TEM and thermal analysis of yttrium doped boehmite nanofibres and nanosheets. J Therm Anal Calorim. 2008;94:219–26.CrossRefGoogle Scholar
  39. 39.
    Frost RL, Musumeci AW, Adebajo MO, Martens W. Using thermally activated hydrotalcite for the uptake of phosphate from aqueous media. J Therm Anal Calorim. 2007;89:95–9.CrossRefGoogle Scholar
  40. 40.
    Palmer SJ, Frost RL. Characterisation of bauxite and seawater neutralised bauxite residue using XRD and vibrational spectroscopic techniques. J Mater Sci. 2009;44:55–63.CrossRefGoogle Scholar
  41. 41.
    Palmer SJ, Frost RL, Nguyen T. Hydrotalcites and their role in coordination of anions in Bayer liquors: anion binding in layered double hydroxides. Coord Chem Rev. 2009;253:250–67.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Ray L. Frost
    • 1
  • Sara J. Palmer
    • 1
  • Laure-Marie Grand
    • 1
    • 2
  1. 1.Inorganic Materials Research Program, School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia
  2. 2.ENSICAENCaen Cedex 4France

Personalised recommendations