Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 100, Issue 2, pp 623–627 | Cite as

Thermal decomposition mechanism and quantum chemical investigation of hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO)

  • Jian-Hua Yi
  • Feng-Qi Zhao
  • Ying-Hui Ren
  • Si-Yu Xu
  • Hai-Xia Ma
  • Rong-Zu Hu
Article

Abstract

The thermal decomposition mechanism of hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO) compound was studied by means of differential scanning calorimetry (DSC), thermogravimetry and derivative thermogravimetry (TG-DTG), and the coupled simultaneous techniques of in situ thermolysis cell with rapid scan Fourier transform infrared spectroscopy (in situ thermolysis/RSFTIR). The thermal decomposition mechanism is proposed. The quantum chemical calculation on HNTO was carried out at B3LYP level with 6-31G+(d) basis set. The results show that HNTO has two exothermic decomposition reaction stages: nitryl group break first away from HNTO molecule, then hydrazine group break almost simultaneously away with carbonyl group, accompanying azole ring breaking in the first stage, and the reciprocity of fragments generated from the decomposition reaction is appeared in the second one. The C–N bond strength sequence in the pentabasic ring (shown in Scheme 1) can be obtained from the quantum chemical calculation as: C3–N4 > N2–C3 > N4–C5 > N1–C5. The weakest bond in NTO is N7–C3. N11–N4 bond strength is almost equal to N4–C5. The theoretic calculation is in agreement with that of the thermal decomposition experiment.
Scheme 1

Scheme of HNTO

Keywords

Hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO) Quantum chemical calculation Thermal decomposition mechanism 

Notes

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (No. 20573098) and the Foundation of National Key Laboratory of Science and Technology on Combustion (No. 9140C3503020605).

References

  1. 1.
    Lee KY, Chapman LB, Coburn MD. A less sensitive explosive: 3-nitro-1,2,4-triazol-5-one. J Energy Mater. 1987;5:27–33.CrossRefGoogle Scholar
  2. 2.
    Lee KY, Coburn MD. 3-Nitro-1,2,4-triazol-5-one, a less sensitive explosive. USP 4,733,610. 1988.Google Scholar
  3. 3.
    Zhang TL. Study on preparation, structure characterization, decomposition mechanism and nonisothermal reaction kinetics of NTO. PhD Dissertation, Nanjing University of Science & Technology, Nanjing, 1993.Google Scholar
  4. 4.
    Song JR. Study on NTO–metal complex. Beijing: Chemical Industry Press; 1998.Google Scholar
  5. 5.
    Li JR, Chen BR, Ou YX, Fan GY, Cui XS. The crystal structure of lead 3-nitro-1,2,4-triazol-5-one (NTO). J Beijing Inst Technol. 1993;13:157–60.Google Scholar
  6. 6.
    Li JR, Chen BR, Ou YX, Zhu NJ. Crystal structure of ammonium 3-nitro-1,2,4-triazol-5-onate. Propellants Explos Pyrotech. 1991;16:145–6.CrossRefGoogle Scholar
  7. 7.
    Zhang TL, Hu RZ, Li FP, Chen L. Preparation, molecular structure and thermal decomposition mechanism of [Cu(NTO)2(H2O)2]·2H2O. Chin Sci Bull. 1993;38:1350–3.Google Scholar
  8. 8.
    Zhang TL, Hu RZ, Li FP. Structural characterization and thermal decomposition mechanisms of alkaline earth metal (Mg, Ca, Sr, and Ba) salts of 3-nitro-1,2,4-triazol-5-one. Thermochim Acta. 1984;244:185–94.Google Scholar
  9. 9.
    Xie Y, Hu RZ, Zhang TL, Li FP. Studies on the synthesis and thermal decomposition mechanisms of rare-earth metal (Pr, Nd, Sm) salt hydrates of 3-nitro-1,2,4-triazol-5-one. J Therm Anal. 1993;39:41–5.CrossRefGoogle Scholar
  10. 10.
    Zhang TL, Hu RZ, Li FP. Preparation, structure characterization and thermal decomposition mechanism of rare salts of 3-nitro-1,2,4-triazol-5-one. J Rare Earths. 1995;13:10–5.Google Scholar
  11. 11.
    Hu RZ, Song JR, Li FP, Kang B, Kong YH, Mao ZH, et al. Preparation, crystal structure, thermal decomposition mechanism and thermodynamical properties of [Dy(NTO)2(H2O)6] NTO·4H2O. Thermochim Acta. 1997;299:87–93.CrossRefGoogle Scholar
  12. 12.
    Song JR, Hu RZ, Li FP, Zhang TL, Mao ZH, Zhou ZH, et al. Preparation, crystal structure and thermal decomposition mechanism of [Co(H2O)6](NTO)2·2H2O. Chin Sci Bull. 1996;41:1806–10.Google Scholar
  13. 13.
    Song JR, Hu RZ, Kang B, Li FP. Preparation, crystal structure, thermal decomposition mechanism and thermodynamical prosperites of [Yb (NTO)3(H2O)4]·6H2O and [Sr(NTO)2(H2O)4]2·4H2O. Thermochim Acta. 1999;331:49–60.CrossRefGoogle Scholar
  14. 14.
    Song JR, Hu RZ, Kang B, Li FP. Preparation, crystal structure, thermal decomposition mechanism, and thermodynamical properties of H[Pr(NTO)4(H2O)4]·2H2O.Thermochim Acta. 1999;335:19–25.CrossRefGoogle Scholar
  15. 15.
    Song JR, Ning BK, Hu RZ, Kang B. Preparation, crystal structure and thermal decoruposition process of [Y(NTO)2NO3(H2O)5]·2H2O.Thermochim Acta. 2000;352–353:111–5.Google Scholar
  16. 16.
    Yang L, Zhang TL, Feng CG, Yu KB. Preparation and molecular structure of AGNTO. Acta Phys Chim Sin. 2001;17:438–42.Google Scholar
  17. 17.
    Singh G, Kapoor IPS, Mannan SM, Tiwari SK. Studies on energetic compounds part 7: thermolysis of ring substituted arylammonium salts of 3-nitro-1,2,4-triazole-5-one (NTO). J Energy Mater. 1998;16:101–8.CrossRefGoogle Scholar
  18. 18.
    Singh G, Felix SP. Studies of energetic compounds, part 29: effect of NTO and its salts on the combustion and condensed phase thermolysis of composite solid propellants, HTPB-AP. Combust Flame. 2003;132:422–32.CrossRefGoogle Scholar
  19. 19.
    Singh G, Felix SP. Studies on energetic compounds. Part 32: crystal structure, thermolysis and applications of NTO and its salts. J Mol Struct. 2003;649:71–83.CrossRefGoogle Scholar
  20. 20.
    Singh G, Felix SP. Studies on energetic compounds 25: an overview of preparation, thermolysis and applications of the salts of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). J Hazard Mater. 2002;A90:1–17.CrossRefGoogle Scholar
  21. 21.
    Ma HX, Song JR, Hu RZ, Li J. Non-isothermal kinetics of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one magnesium complex. Chin J Chem. 2003;21:1558–61.Google Scholar
  22. 22.
    Yi JH, Zhao FQ, Gao HX, Xu SY, Wang MC, Hu RZ. Preparation, characterization, nonisothermal reaction kinetics, thermodynamic properties, and safety performances of high nitrogen compound: hydrazine 3-nitro-1,2,4-triazol-5-one complex. J Hazard Mater. 2008;153:261–8.CrossRefGoogle Scholar
  23. 23.
    Wu KW, Hou HY, Shu CM. Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC. J Therm Anal Calorim. 2006;83:41–4.CrossRefGoogle Scholar
  24. 24.
    Yi JH, Zhao FQ, Xu SY, Zhang LY, Ren XN, Gao HX, et al. Effect of pressures on decomposition reaction kinetics of double-base propellant catalyzed with cerium citrate. J Therm Anal Calorim. 2009;95:381–5.CrossRefGoogle Scholar
  25. 25.
    Li JZ, Fan XZ, Hu RZ, Zheng XD, Zhao FQ, Gao HX. Thermal behavior of copper(II) 4-nitroimidazolate. J Therm Anal Calorim. 2009;96:195–201.CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 03, Revision B. 01. Pittsburgh, PA: Gaussian Inc.; 2003.Google Scholar
  27. 27.
    Ma HX, Song JR, Xu KZ, Hu RZ, Zhai GH, Wen ZY, et al. Preparation, crystal structure and theoretical calculation of (CH3)2NH2 + C2N4OH. Acta Chim Sin. 2003;61:1819–23.Google Scholar
  28. 28.
    Ma HX, Song JR, Xu KZ, Hu RZ, Wen ZY. The thermal decomposition mechanism and the quantum chemical calculation of [Mg(H2O)6](NTO)2·2H2O. Chin J Energy Mater. 2004;12:158–60, 164.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Jian-Hua Yi
    • 1
  • Feng-Qi Zhao
    • 1
  • Ying-Hui Ren
    • 2
  • Si-Yu Xu
    • 1
  • Hai-Xia Ma
    • 2
  • Rong-Zu Hu
    • 1
  1. 1.Xi’an Modern Chemistry Research InstituteXi’anChina
  2. 2.School of Chemical EngineeringNorthwest UniversityXi’anChina

Personalised recommendations