Advertisement

Influence of drying processes on oxidative stability of ethyl corn biodiesel by differential scanning calorimetry

  • A. F. F. Vasconcelos
  • M. B. Dantas
  • M. G. R. Filho
  • R. Rosenhaim
  • E. H. S. Cavalcanti
  • N. R. Antoniosi Filho
  • F. S. M. Sinfrônio
  • I. M. G. Santos
  • A. G. Souza
Article

Abstract

The influence of drying processes in the biodiesel oxidation was investigated by means of the oxidative induction time obtained from differential scanning calorimetry data. For this purpose, corn biodiesel was dried by different methods including: chemical (anhydrous sodium sulfate) and thermal (induction heating, heating under vacuum and with microwave irradiation). The drying efficiency was evaluated by monitoring IR absorption in the 3,500–3,200 cm−1 range and by the AOCS Bc 2-49 method. In general, the oxidative induction times increased inversely to the heating degree, except that of microwave irradiation, which was selective to water evaporation and caused low impact over the unsaturation of biodiesel. The DSC technique was shown to be a powerful tool to evaluate with high level of differentiation the influence of the drying process on the oxidative stability of biodiesel.

Keywords

Biodiesel Humidity Oxidative stability DSC 

Notes

Acknowledgements

The authors acknowledge CNPq and UEMA for the financial support of this work.

References

  1. 1.
    Rudnik E, Szczucinska A, Gwardiak H, Szulc A, Winiarska A. Comparative studies of oxidative stability of linseed oil. Thermochim Acta. 2001;370:135–40.CrossRefGoogle Scholar
  2. 2.
    Gerpen JV. Biodiesel processing and production. Fuel Process Technol. 2005;86:1097–107.CrossRefGoogle Scholar
  3. 3.
    Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Biores Technol. 2004;91:289–95.CrossRefGoogle Scholar
  4. 4.
    Sorichetti PA, Romano SD. Physico-chemical and electrical properties for the production and characterization of biodiesel. Phys Chem Liq. 2005;43:37–48.CrossRefGoogle Scholar
  5. 5.
    Conceição MM, Candeia RA, Silva FC, Bezerra AF, Fernandes Jr VJ, Souza AG. Thermoanalytical characterization of castor oil biodiesel. Renew Sustain Energy Rev. 2007;11:964–75.Google Scholar
  6. 6.
    Ramalho VC, Jorge N. Antioxidantes utilizados em óleos, gorduras e alimentos gordurosos. Quím Nova. 2006;29:755–60.Google Scholar
  7. 7.
    Backtorp C, Hagvall L, Borje A, Karlberg A, Norrby P, Nyman G. Mechanism of air oxidation of the fragrance terpene geraniol. J Chem Theory Comput. 2008;4:101–6.Google Scholar
  8. 8.
    Dunn RO. Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Process Technol. 2005;86:1071–85.CrossRefGoogle Scholar
  9. 9.
    Velasco J, Andersen ML, Skibsted LH. Evaluation of oxidative stability of vegetable oils by monitoring the tendency to radical formation. A comparison of electron spin resonance spectroscopy with the Rancimat method and differential scanning calorimetry. Food Chem. 2004;85:623–32.CrossRefGoogle Scholar
  10. 10.
    Liang YC, May CY, Foon CS, Ngan MA, Hock CC, Basiron Y. The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel. 2006;85:867–70.CrossRefGoogle Scholar
  11. 11.
    Tan CP, Che Man YB, Selamat J, Yusoff MSA. Comparative studies of oxidative stability of edible oils by differential scanning calorimetry and oxidative stability index methods. Food Chem. 2002;76:385–9.CrossRefGoogle Scholar
  12. 12.
    Simon P, Kolman L, Niklova I, Schmidt S. Analysis of the induction period of oxidation of edible oils by differential scanning calorimetry. J Am Oil Chem Soc. 2000;77:639–42.CrossRefGoogle Scholar
  13. 13.
    Felizardo P, Baptista P, Menezes JC, Correia MJN. Multivariate near infrared spectroscopy models for predicting methanol and water content in biodiesel. Anal Chim Acta. 2007;595:107.CrossRefGoogle Scholar
  14. 14.
    Santos NA, Tavares MLA, Rosenhaim R, Silva FC, Fernandes Jr VJ, Santos IMG, et al. Thermogravimetric and calorimetric evaluation of babassu biodiesel obtained by the methanol route. J Therm Anal Calorim. 2007;87:649–52.CrossRefGoogle Scholar
  15. 15.
    Andrade JM, Dantas MB, Vasconcelos AFF, Keyson D, Santos CCL, Costa ASG, et al. Produção de Biodiesel de Óleo de Milho Utilizando Microondas e o Método Convencional. II Congresso da Rede Brasileira de Tecnologia de Biodiesel. 2007;2:154.Google Scholar
  16. 16.
    American Oil Chemical Society (AOCS). Official methods and recommended practices, 4th ed. Champaign, 2 (1990).Google Scholar
  17. 17.
    Dantas MB, Almeida AAF, Conceição MM, Fernandes Jr VJ , Santos IMG, Silva FC, et al. Characterization and kinetic compensation effect of corn biodiesel. J Therm Anal Calorim. 2007;87:847–51.CrossRefGoogle Scholar
  18. 18.
    Dantas MB, Conceição MM, Fernandes Jr VJ, Santos NA, Rosenhaim R, Marques ALB, et al. Thermal and kinetic study of corn biodiesel obtained by the methanol and ethanol routes. J Therm Anal Calorim. 2007;87:835–9.CrossRefGoogle Scholar
  19. 19.
    Souza AG, Dantas HJ, Santos IMG, Fernandes Jr VJ, Sinfronio FSM, Texeira LSG, et al. Thermal and kinetic evaluation of cotton oil biodiesel. J Therm Anal Calorim. 2007;90:945–9.CrossRefGoogle Scholar
  20. 20.
    Lopes WA, Fascio M. Esquema para interpretação de espectros de substâncias orgânicas na região do infravermelho. Quím Nova. 2004;27:670–3.CrossRefGoogle Scholar
  21. 21.
    Dunn RO. Oxidative stability of biodiesel by dynamic mode pressurized-differential scanning calorimetry (P-DSC). Fuel Process Technol. 2005;49(5):1633–41.Google Scholar
  22. 22.
    Knothe G. Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc. 2006;83:823–33.CrossRefGoogle Scholar
  23. 23.
    Ken L, Jie MSF, Kit CY. Lipids fatty acids analysis spectroscopy and epectrotometry. Lipids. 1988;23:367–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • A. F. F. Vasconcelos
    • 1
    • 2
  • M. B. Dantas
    • 1
  • M. G. R. Filho
    • 1
    • 3
  • R. Rosenhaim
    • 1
  • E. H. S. Cavalcanti
    • 4
  • N. R. Antoniosi Filho
    • 5
  • F. S. M. Sinfrônio
    • 1
  • I. M. G. Santos
    • 1
  • A. G. Souza
    • 1
  1. 1.Departamento de Química, CCENUniversidade Federal da ParaíbaJoao PessoaBrazil
  2. 2.Departamento de Química e Biologia, CECENUniversidade Estadual do MaranhãoSao LuisBrazil
  3. 3.Coordenação de Química, CCENUniversidade Estadual do PiauíTeresinaBrazil
  4. 4.Laboratório de Corrosão e Proteção, DCDInstituto Nacional de TecnologiaRio de JaneiroBrazil
  5. 5.Departamento de QuímicaUniversidade Federal de GoiásGoianiaBrazil

Personalised recommendations