Kinetic studies of urban solid residues and leachate from sanitary landfill

  • Sonia de Almeida
  • Evaneide N. Lima
  • Marisa S. Crespi
  • Clóvis A. Ribeiro
  • Valdir Schalch


Urban solid residues are constituted of food remaining, grass leaves, fruit peelings, paper, cardboard, rubber, plastic, etc. The organic fraction formed represents about 50% during the decomposition yields biogas and leachate, which are sources of pollution. Residue samples were collected from the landfill in different and cells from several ages and the corresponding leachate, both after treatments, were submitted to thermal analysis. Kinetic parameters were determined using Flynn–Wall–Ozawa method. The linear relation between the two kinetic parameters (ln A and E) was verified for organic residue urban’s samples, but not for leachate’s sample. The occurred difference can be attributed to the constituents present in leachate.


Kinetic parameters Landfill Leachate 



The authors wish to thank the Air Force Academic—AFA, Pirassununga, SP.


  1. 1.
    Frésca FRC. Dissertação de Mestrado em Ciência de Engenharia Ambiental, Escola de Engenharia de São Carlos. São Paulo: Universidade de São Paulo; 2007. p. 131.Google Scholar
  2. 2.
    Silva AR, Crespi MS, Ribeiro CA, Oliveira SC, Silva MRS. Kinetic of thermal decomposition of residues from different kinds of composting. J Therm Anal Calorim. 2004;75:401–9.CrossRefGoogle Scholar
  3. 3.
    Dell’ Abate MT. Thermal methods of organic matter maturation monitoring during a composting process. J Therm Anal Calorim. 2000;61:389–96.CrossRefGoogle Scholar
  4. 4.
    Flynn JH, Wall J. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  5. 5.
    Flynn JH, Wall J. General treatment of the thermogravimetry of polymers. Nat Bur Stand. 1966;70 A:487–523.Google Scholar
  6. 6.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.CrossRefGoogle Scholar
  7. 7.
    Doyle C. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.CrossRefGoogle Scholar
  8. 8.
    American Society for Testing and Mateirals. E 698-99: standard test method for Arrhenius symmetries for thermally unstable material. West Conshohocken: American Society for Testing and Mateirals; 2000. p. 7.Google Scholar
  9. 9.
    Associação Brasileira de Normas Técnicas. NBR 10.004. Resíduos sólidos: classificação. Rio de Janeiro; 2004.Google Scholar
  10. 10.
  11. 11.
    Associação Brasileira de Normas Técnicas. NBR 10.007. Amostragem de resíduos sólidos. Rio de Janeiro; 2004.Google Scholar
  12. 12.
    Lima EN, Crespi MS, Ribeiro CA, Almeida S. Non-isothermal kinetic for lyophilized leachate from sanitary landfill and composting usine. J Therm Anal Calorim. 2007;90:823–6.CrossRefGoogle Scholar
  13. 13.
    Garcia AN, Marcila A, Font R. Thermogravimetric kinetic study of the pyrolysis of municipal solid waste. Thermochim Acta. 1995;254:77.CrossRefGoogle Scholar
  14. 14.
    Prasad TP, Kanungo SB, Ray HS. Non-isothermal kinetics: some merits and limitations. Thermochim Acta. 1992;203:503–14.CrossRefGoogle Scholar
  15. 15.
    Poço JG, Furlan H, Giudici R. A discussion on kinetic compensation effect and anisotropy. J Phys Chem B. 2002;106:4873–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Sonia de Almeida
    • 1
  • Evaneide N. Lima
    • 1
  • Marisa S. Crespi
    • 1
  • Clóvis A. Ribeiro
    • 1
  • Valdir Schalch
    • 2
  1. 1.São Paulo State University – UNESPSão PauloBrazil
  2. 2.São Paulo UniversitySão PauloBrazil

Personalised recommendations