Advertisement

Factors affecting vitamin degradation in oil-in-water nano-emulsions

  • Perla Relkin
  • Jin-Mi Jung
  • Michel Ollivon
Article

Abstract

Fat fractions composed by different proportions of low (LMT) or high (HMT) melting temperature triacylglycerols were used, alone or in mixture with α-tocopherol for the preparation of oil-in-water protein stabilised nano-emulsions. Addition of α-tocopherol to the LMT or HMT fat fractions was accompanied by different changes in the emulsion characteristics such as fat droplet size distributions, under-cooling and polymorphic transitions, in parallel with different extent of α-tocopherol degradation reactions. Our results showed higher immobilisation pattern of α-tocopherol molecules and higher protection against degradation when incorporated in higher size fat droplets, which presented 2Lα → 2Lβ′ polymorphic transitions under cooling and re-heating cycles.

Keywords

Antioxidant DSC Emulsion Encapsulation Fat droplet size Fat crystallization Fat polymorphism Vitamin XRD 

Notes

Acknowledgements

Dr Claudie Bourgaux (UMR CNRS 8612) is acknowledged for fruitful discussion.

References

  1. 1.
    Pokorny J, Yanishlieva N, Gordon M. Antioxidants in foods, practical applications. Cambridge: Woodhead; 2001.Google Scholar
  2. 2.
    Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr. 2004;44:275–95.CrossRefGoogle Scholar
  3. 3.
    Wang X, Quinn PJ. The structure and phase behaviour of α-tocopherol-rich domains in 1-palmitoyl-2-oleoyl-phosphatidylethanolamine. Biochimie. 2006;88:1883–8.CrossRefGoogle Scholar
  4. 4.
    Yokogawa K, Shima Y, Hashimoto T, Hiyajyo M, et al. High-bioavailability of α-tocopherol loaded into poly (DL-lactic-co-glycolic acid) microspheres in apolipoprotein B knockout mice. Pharm Res. 2003;20:1846–50.CrossRefGoogle Scholar
  5. 5.
    Hugues GA. Nanostructure-mediated drug delivery. Nanomedicine. 2005;1:22–30.Google Scholar
  6. 6.
    Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58:173–82.CrossRefGoogle Scholar
  7. 7.
    Park GY, Mun S, Park Y, et al. Influence of encapsulation of emulsified lipids with chitosan on their in vivo digestibility. Food Chem. 2007;104:761–7.CrossRefGoogle Scholar
  8. 8.
    Hu M, McClements J, Decker EA. Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. J Agric Food Chem. 2003;51:1696–700.CrossRefGoogle Scholar
  9. 9.
    Chau CF, Wu SH, Yen GC. The development of regulations for food nanotechnology. Trends Food Sci Technol. 2007;18:269–80.CrossRefGoogle Scholar
  10. 10.
    Sanguansri P, Augustin MA. Nanoscale materials development—a food industry perspective. Trends Food Sci Technol. 2006;17:547–56.CrossRefGoogle Scholar
  11. 11.
    Coupland J. Crystallization in emulsions. J Curr Opin Colloid Interface Sci. 2002;7:445–50.CrossRefGoogle Scholar
  12. 12.
    McClements DJ, Dungan SR, German JB, Simoneau C, Kinsella JE. Droplet size and emulsifier type affect crystallization and melting of hydrocarbon-in-water emulsion. J Food Sci. 1993;58:1148–51.CrossRefGoogle Scholar
  13. 13.
    Kaneko N, Horie T, Ueno S, Yano J, Katsuragi T, Sato K. Impurity effects on crystallization rates of n-hexane in oil-in-water emulsions. J Cryst Growth. 1999;197:263–70.CrossRefGoogle Scholar
  14. 14.
    Relkin P, Sourdet S, Fosseux P-Y. Fat crystallization in complex food emulsions: effects of adsorbed milk proteins and of a whipping process. J Therm Anal Calorim. 2003;71:187–95.CrossRefGoogle Scholar
  15. 15.
    Relkin P, Ait-Talleb, Sourdet S. Thermal behavior of fat droplets as related to adsorbed milk proteins in complex food emulsions. A DSC study. J Am Oil Chem Soc. 2003;80:741–6.CrossRefGoogle Scholar
  16. 16.
    Tangsuphoom N, Coupland JN. Effect of heating and homogenization on the stability of coconut milk emulsions. J Food Sci. 2005;70:E466–70.CrossRefGoogle Scholar
  17. 17.
    Relkin P, Sourdet S. Factors affecting fat droplet aggregation in whipped frozen protein-stabilized emulsions. Food Hydrocolloids. 2005;19:503–11.CrossRefGoogle Scholar
  18. 18.
    Arima S, Ueji T, Ueno S, Ogawa A, Sato K. Retardation of crystallization-induced destabilization of PMF-in-water emulsion with emulsifier additives. Colloid Surf B. 2007;55:98–106.CrossRefGoogle Scholar
  19. 19.
    Hartel RW, Kaylegian KE. Advances in milk fat fractionation. Technology and Applications. In: Garti N, Sato K, editors. Crystallization process in fats and lipid systems. NY: Marcel Dekker; 2001. p. 381–427.Google Scholar
  20. 20.
    Relkin P, Jung JM, Kalnin D, Ollivon M. Structural behaviour of lipid droplets in protein-stabilized nano-emulsions and stability of alpha-tocopherol. Food Biophys. 2008;3:163–8.CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Ollivon M, Keller G, Bourgaux C, Kalnin D, Villeneuve P, Lesieur P. DSC and high resolution X-ray diffraction coupling. J Therm Anal Calorim. 2006;83:219–24.CrossRefGoogle Scholar
  23. 23.
    Hindle S, Povey MJW, Smith K. Kinetics of crystallization in n-hexadecane and cocoa butter oil-in-water emulsions accounting for droplet collision-mediated nucleation. J Colloid Interface Sci. 2000;232:370–80.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Department of Science and Engineering for Food and Bioproducts (UMR 1145)AgroParisTechMassyFrance
  2. 2.CNRS UMR 8612, Equipe de Physicochimie des Systèmes PolyphasésChatenay-MalabryFrance

Personalised recommendations