Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 97, Issue 2, pp 755–760 | Cite as

Thermochemistry of some adducts of Indium(III) chloride with neutral donors

  • P. O. Dunstan
Article

Abstract

The [InCl3(L) n ] (where L is 2,2′-bipyridine (bipy), 2,2′-bipyridine N,N′-dioxide (bipyNO), N,N-dimethylacetamide (dma), urea (u), thiourea (tu) or 1,1,3,3-tetramethylthiourea (tmtu); n = 1.5, 3 or 4) were synthesized and characterized by melting points, elemental analysis, thermal analysis and IR spectroscopy. The enthalpies of dissolution of the adducts, Indium(III) chloride and ligands in 1.2 M aqueous HCl were measured and by using thermochemical cycles, the following thermochemical parameters for the adducts have been determined: the standard enthalpies for the Lewis acid/base reactions (Δr H θ), the standard enthalpies of formation (Δf H θ), the lattice standard enthalpies (ΔM H θ), and the standard enthalpies of decomposition (ΔD H θ).

Keywords

Indium(III) chloride Thermochemistry Enthalpies of solution 

References

  1. 1.
    Osipov OA, Semenova IM. The infrared spectra of molecular compounds of Indium chloride with nitrogen-containing organic substances. J Gen Chem USSR. 1963;33:709–13.Google Scholar
  2. 2.
    Johnson BFG, Walton RA. Coordination compounds of thalium(III). II. Some complexes of thalium(III) halides and their indium(III) analogs. Inorg Chem. 1966;5(1):49–53.CrossRefGoogle Scholar
  3. 3.
    Carty AJ. Coordination complexes of gallium(III) and indium(III) halides. Can J Chem. 1967;45:345–51.CrossRefGoogle Scholar
  4. 4.
    Carty AJ, Tuck DG. Co-ordination compounds of indium(III) chloride, bromide, and iodide with neutral donars. J Chem Soc A. 1966;1081–7.Google Scholar
  5. 5.
    Carty AJ. Coordination complexes of gallium(III) and indium(III) halide complexes with triarylphosphines. Can J Chem. 1967;45:3187–91.CrossRefGoogle Scholar
  6. 6.
    Adams DM. Coordination chemistry of indium. Part VI. Far-infrared spectra of indium trihalide adducts with neutral donors. J Chem Soc A. 1968;162–4.Google Scholar
  7. 7.
    Greenwood NN, Prince DJ. Thermochemistry of some indium trihalide adducts. J Chem Soc A. 1969;2876–8.Google Scholar
  8. 8.
    Carty AJ, Hinsperger T, Boorman PM. Coordination complexes of gallium and indium(III) halides. V. Trialkyl and mixed alkyl-aryl phosphine complexes of indium(III) chloride, bromide, and iodide. Can J Chem. 1970;48:1959–70.CrossRefGoogle Scholar
  9. 9.
    Brown DH, Stewart DT. The preparation and far I.R. spectra of some indium trihalide complexes. J Inorg Nucl Chem. 1970;32:3751–5.CrossRefGoogle Scholar
  10. 10.
    Roundhill DM. Some complexes of indium(III) with olefinic phosphines. J Inorg Nucl Chem. 1971;33:3367–73.CrossRefGoogle Scholar
  11. 11.
    Trusov VI, Suvorov AV. Composition of the vapor in the WCl6-POCl3 and WOCl4-POCl3 systems. Zh Neorg Khim. 1974;19:549–50.Google Scholar
  12. 12.
    Trusov VI, Suvorov AV. Thermodynamic study of the vapour-phase mono-ammines AlBr3∙NH3 and AlI3∙NH3. Zh Neorg Khim. 1974;19:3253–6.Google Scholar
  13. 13.
    Trusov VI, Suvorov AV, Tarasova ASh. Thermodynamic study of the vapour-phase mono-ammines InCl3∙NH3 and InBr3∙NH3. Zh Neorg Khim. 1976;21:3102–6.Google Scholar
  14. 14.
    Carty AJ, Tuck DG. The coordination chemistry of indium. Prog Inorg Chem. 1975;19:243–341.CrossRefGoogle Scholar
  15. 15.
    Habeeb JJ, Said FF, Tuck DG. Co-ordination of indium. Part 35. The direct electrochemical synthesis of adducts of indium(III) halides. J Chem Soc Dalton Trans. 1980;1161–3.Google Scholar
  16. 16.
    Robinson WT, Wilkins CJ, Zeying Z. Structures of trihalide complexes with phosphine oxides and dimethyl sulphoxide, with comments on the metal-oxygen bonding. J Chem Soc Dalton Trans. 1990;219–27.Google Scholar
  17. 17.
    Alcock NW, Degnan IA, Howarth OW, Wallbridge MGH. Synthetic spectroscopic and x-ray crystallographic studies on complexes formed between indium(III) iodide and phosphine ligands. J Chem Soc Dalton Trans. 1992;2775–80.Google Scholar
  18. 18.
    Malyarik MA, Ilyukhin AB, Petrosyants SP, Buslaev YuA. Geometrical isomerism in halide complexes of indium(III): preparation and crystal structure of [InCl3(thio)3]. Russ J Inorg Chem. 1992;37(7):763–5.Google Scholar
  19. 19.
    Self MF, McPhail AT, Wells RL. X-ray crystal structure of InCl3·2THF, a neutral five coordinate bis-adduct of an Indium(III) trihalide. Polyhedron. 1993;12(15):455–9.CrossRefGoogle Scholar
  20. 20.
    Wasylishen RE, Wright KC, Eichele K, Cameron TS. Characterization of the J(115In, 31P) tensor for a 1:1 adduct of indium tribromide and a triarylphosphine. Inorg Chem. 1994;33:407–8.CrossRefGoogle Scholar
  21. 21.
    Wells RL, Kher SS, Baldwin RA. Synthesis and characterization of a neutral six-coordinate tris-adduct of an indium(III) trihalide. X-ray crystal structure of InCl3(THF)3. Pergamon. 1997;12(19):2731–5.Google Scholar
  22. 22.
    Baker LJ, Kloo LA, Rickard CEF, Taylor MJ. Adducts of GaI3 and InI3 with Ph3P and Ph3As. Organomet Chem. 1997;545–546:249–55.Google Scholar
  23. 23.
    Sigl M, Schier A, Schmidbaur H. Contributions to the coordination and structural chemistry of Gallium(III) and Indium(III) halides: complexes with bi- and tridentate tertiary phosphanes. Eur J Inorg Chem. 1998;2:203–10.CrossRefGoogle Scholar
  24. 24.
    Timoshkin AYu, Suvorov AV, Schaefer GF III. Ab initio quantum-chemical study of the bond nature in the donor-acceptor complexes MX3YH3 (M = AL, Ga, In; x = F, Cl, Br, I; Y = N, P, As). Russ J Gen Chem. 1998;68(7):1085–94.Google Scholar
  25. 25.
    Robinson WJ, Wilkins CJ, Zeying Z. Indium(III) halide complexes with trimethylphosphine sulphide and trimethylarsine sulphide: structures and bonding of [InX3(Me3MS)2] (X = Cl or Br, M = P or As) and [InCl3(H2O)(Me3AsS)2]. J Chem Soc Dalton Trans. 1988;2187–92.Google Scholar
  26. 26.
    Sevast’yanova TN, Suvorov AV. The structure and thermal stability of group III halide complexes with pyridine. Russ J Coord Chem. 1999;25(10):727–37.Google Scholar
  27. 27.
    Timoshkin AY, Suvorov AV, Bettinger HF, Schaefer HF III. Rol of terminal atoms in the donor-acceptor complexes MX3-D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X-; Y = N, P, As). J Am Chem Soc. 1999;121:5687–99.CrossRefGoogle Scholar
  28. 28.
    Gallagher MJ, Graddon DP, Sheikh AR. Reaction of antimony(III) halides with Lewis bases. Thermochim Acta. 1978;27:269–80.CrossRefGoogle Scholar
  29. 29.
    Dunstan PO. Thermochemical parameters of α-picoline n-oxide adducts of some divalent transition metal bromides. J Therm Anal Calorim. 2005;79:355–9.CrossRefGoogle Scholar
  30. 30.
    Dunstan PO, Airoldi C. Adducts of arsenic trihalides with heterocyclic amines: synthesis, characterization, and thermochemistry. J Chem Eng Data. 1988;33:93–6.CrossRefGoogle Scholar
  31. 31.
    Dunstan PO. Thermochemistry of amide and thioamide complexes of arsenic trihalides. J Chem Eng Data. 1989;156:163–77.Google Scholar
  32. 32.
    Kolthoff IM, Sandall EB. Tratado de Química Analítica Cuantitativa. Librería y Editorial Nigar S. P. L., tercera ed., Buenos Aires; 1956. p. 371.Google Scholar
  33. 33.
    Sinha SP. 2,2′-Dipyridyl complexes of rare earths I: preparation, infra-red and some other spectroscopic data. Spectrochim Acta. 1964;20:879–86.CrossRefGoogle Scholar
  34. 34.
    Kida S, Quagliano J, Walmsley JA, Tyree SY. Infra-red studies of pyridine N-oxide and its Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III), Fe(II), Fe(III) and Sn(IV) complexes in the 3-15μ region. Spectrochim Acta. 1963;19:189–99.CrossRefGoogle Scholar
  35. 35.
    Aggarwal RC, Sing PP. Preparation and infrared spectra of the complexes of stannic chloride with certain amides. Z fur Anorganishe All Chem. 1964;332:103–12.CrossRefGoogle Scholar
  36. 36.
    Aggarwal RC, Sing PP. Molecular addition compounds of tin(IV) chloride-II. J Inorg Nucl Chem. 1964;26:2185–90.CrossRefGoogle Scholar
  37. 37.
    Cook D. The donor characteristics of the carbonyl group. J Am Chem Soc. 1958;80:49–55.CrossRefGoogle Scholar
  38. 38.
    Schafer SrM, Curran C. Infrared spectra of complexes of metal halides with tetramethylurea and tetramethylthiourea. Inorg Chem. 1966;5(2):265–8.CrossRefGoogle Scholar
  39. 39.
    Dunstan PO. Thermochemistry of adducts of nickel(II) acetylacetonate chelate with heterocyclic bases. Thermochim Acta. 1998;317:165–74.CrossRefGoogle Scholar
  40. 40.
    Wagman DD, Evans WH, Parker VB, Schumm RH, Hallow I, Churney SM, et al. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data. 1982;v(II):2–47, 2–133.Google Scholar
  41. 41.
    da Silva MLCP, Chagas AP, Airoldi C. Heterocyclic N-oxide ligands: a thermochemical study of adducts with zinc, cadmium, and mercury chlorides. J Chem Soc Dalton Trans. 1988;2113–6.Google Scholar
  42. 42.
    Varil’eva TF, Zhil’tsova EN, Vredenskii AA. Enthalpies of combustión of NN-dimethylformamide and NN-dimethylacetamide. Russ J Phys Chem. 1972;46:315–6.Google Scholar
  43. 43.
    Airoldi C. Adducts of amides with antimony and bismuth trichlorides: synthesis, characterization and thermochemistry. Inorg Chem. 1981;20:998–1002.CrossRefGoogle Scholar
  44. 44.
    Pedley JB, Rylance J. Computer analysed thermochemical data: organic and organo metallic compounds. Brighton, England: Sussex University; 1970.Google Scholar
  45. 45.
    Gómez LAT, Sabbah R. Thermodynamique de substances soafreas. IV. Etude thermochimique de la thiouree, de la thiosemicarbazide et de la thiocarohydrzide. Thermochim Acta. 1982;57:67–81.CrossRefGoogle Scholar
  46. 46.
    Ashcroft SJ. Enthalpies of formation of bis(thiourea) complexes of cobalt, zinc, cadmium, mercury and silver chlorides. J Chem Eng Data. 1988;33(2):73–5.CrossRefGoogle Scholar
  47. 47.
    Ingari S, Murata S, Sakiyama M. Thermochemical studies on thioacetamide and tetramethylthiooourea. Estimation of stabilization energies due to interaction between thiocarbonyl group and neighbouring nitrogen atom. Bull Chem Soc Jpn. 1982;55:2808–13.CrossRefGoogle Scholar
  48. 48.
    Pearson RG. Hard and soft acids and bases (HSAB). I. Fundamental priciples. J Chem Educ. 1968;45(9):581–7.Google Scholar
  49. 49.
    Pearson RG. Hard and soft acids and bases (HSAB). II. Underlying theories. J Chem Educ. 1968;45(10):643–8.CrossRefGoogle Scholar
  50. 50.
    Pearson RG. Hard and soft acids and bases. Chem Br. 1967;3(3):103–7.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations