Journal of Thermal Analysis and Calorimetry

, Volume 97, Issue 2, pp 775–780 | Cite as

Sintering studies on Ni–Cu–YSZ SOFC anode cermet processed by mechanical alloying

  • Thomaz Augusto Guisard Restivo
  • Sonia Regina Homem Mello-Castanho


New 40 vol%[(Cu)–Ni]–YSZ cermet materials processed by mechanical alloying (MA) of the row powders are prepared. The powder compacts are sintered in air, hydrogen and inert (argon) atmospheres at a dilatometer and tubular furnace up to 1,350 °C. Sintering by activated surface concept (SAS) can anticipate and enhance the densification in such powders. Stepwise isothermal dilatometry (SID) sintering kinetics study is performed allowing determining kinetic parameters for Ni–YSZ and Ni–Cu–YSZ pellets. Two-steps sintering processes is indicated while Cu-bearing material features the smallest activation energy for sintering. The allied MA–SAS method is a promising route to prepare SOFC fuel cell anode materials.


Fuel cell Sintering kinetics SOFC anode 


  1. 1.
    Minh NQ. Ceramic fuel cells. J Am Ceram Soc. 1993;76(3);563–88.CrossRefGoogle Scholar
  2. 2.
    Atkinson A, Barnett S, Gorte RJ, Irvine JT, McEvoy AJ, Mogensen M, et al. Advanced anodes for high temperature fuel cells. Nat Mater. 2004;3(1):17–27.CrossRefGoogle Scholar
  3. 3.
    Maèek J, Novosel B, Marinšek MJ. Ni–YSZ SOFC anodes—minimization of carbon deposition. J Eur Ceram Soc. 2007;27(2–3):487–91.Google Scholar
  4. 4.
    Sankar J, Xu Z, Yarmolenko S. FY 2005 Progress Report for Heavy Vehicle Propulsion Materials, 4D. Processing and Characterization of Structural and Functional Materials for Heavy-Vehicle Applications, 89–97 (May 2006).Google Scholar
  5. 5.
    Sun C, Stimming UJ. Recent anode advances in solid oxide fuel cells. J Power Sources. 2007;171(2):247–60.CrossRefGoogle Scholar
  6. 6.
    Gross MD, Vohs JM, Gorte RJ. A study of thermal stability and methane tolerance of Cu-based SOFC anodes with electrodeposited Co. Electrochim Acta. 2007;52(5):1951–7.CrossRefGoogle Scholar
  7. 7.
    Guisard Restivo TA, Mello-Castanho SRH. YZrO2-Ni cermet processing by high energy milling. Mater Sci Forum. 2008;591–593:514–20.CrossRefGoogle Scholar
  8. 8.
    Sorensen OT. Thermogravimetric and dilatometric studies using Stepwise Isothermal Analysis and related techniques. J Therm Anal. 1992;38(1–2):213–28.Google Scholar
  9. 9.
    Husum PL, Sorensen OT. Computer controlled forced stepwise isothermal analysis. Thermochim Acta. 1987;114:131–8.CrossRefGoogle Scholar
  10. 10.
    Guedes E Silva CC, Carvalho FMS, Restivo TAG. Estudo dos Mecanismos de Difusão em Cerâmicas a Base de Alumina. In: 14ª Congresso Brasileiro de Ciência e Engenharia de Materiais, Águas de São Pedro, SP, Brasil, dez. 2000.Google Scholar
  11. 11.
    Restivo TAG, Pagano L Jr. Sintering studies on the UO2 · Gd2O3 system using SID method, In: Conference on characterization and quality control of nuclear fuels 2002, Hyderabad, India, 2003.Google Scholar
  12. 12.
    Restivo TAG, Pagano L Jr. Effect of additives on the sintering kinetics of the UO2·Gd2O3 system, In: TCM Brussels, Oct 2003.Google Scholar
  13. 13.
    El Sayed Ali M, Sorensen OT. Riso-R-518, 1985. 12p.Google Scholar
  14. 14.
    Wang H, Liu X, Chen F, Meng G, Sorensen OT. Kinetics and mechanism of a sintering process for macroporous alumina ceramics by extrusion. J Am Ceram Soc. 1998;81(3):781–4.CrossRefGoogle Scholar
  15. 15.
    Bellon O. Dilatometric sintering studies of zirconia toughened ceramics. Centre for Advanced Technical Ceramics. Ecole Nationale Superieure de Ceramiques Industrielles. Risoe National Laboratory. 1991.Google Scholar
  16. 16.
    Yan R, Chu F, Ma Q, Liu X, Meng G. Sintering kinetics of samarium doped ceria with addition of cobalt oxide. Mater Lett. 2006;60(29–30):3605–9.Google Scholar
  17. 17.
    Restivo TAG, Mello-Castanho SR, Cu-Ni-YSZ anodes for solid oxide fuel cell by mechanical alloying processing In: 7th Internation Workshop on Interfaces Santiago de Compostela, Spain, 2008, ISBN 9788498601015.Google Scholar
  18. 18.
    Ashby MF, Bahk S, Bevk J, Turnbull D. The influence of a dispersion of particles on the sintering of metal powders and wires. Prog Mater Sci. 1980;25:1–34.CrossRefGoogle Scholar
  19. 19.
    Panigrahi BB. Sintering and grain growth kinetics of ball milled nanocrystalline nickel powder. Mater Sci Eng A. 2007;460–461:7–13.Google Scholar
  20. 20.
    Zhou YH, Harmelin M, Bigot J. Preparation of ultra-fine metallic powders. A study of the structural transformations and of the sintering behaviour. Mater Sci Eng A. 1991;113:775–9.Google Scholar
  21. 21.
    Tanaka T, Ishihara KN, Shingu PH. Formation of metastable phases of Ni-C. Metall Mater Trans A. 1992;23(9):2431–5.CrossRefGoogle Scholar
  22. 22.
    Jianlong Y. Technical Report, Centre for Advanced Technical Ceramics, Riso National Laboratory, July 1993.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Thomaz Augusto Guisard Restivo
    • 1
  • Sonia Regina Homem Mello-Castanho
    • 1
  1. 1.Centro de Ciências e Tecnologia de Materiais – CCTM – IPENCidade UniversitáriaSão PauloBrazil

Personalised recommendations