Journal of Thermal Analysis and Calorimetry

, Volume 98, Issue 1, pp 207–214 | Cite as

Correlation of humic substances chemical properties and their thermo-oxidative degradation kinetics

Part 1. Arrhenius equation as the temperature function
  • J. Kučerík
  • J. Kislinger
  • P. Majzlík
  • M. Pekař


Application of the Arrhenius equation as the temperature function in modeling of the degradation kinetics of humic substances brought a high positive Pearson correlation coefficient with the carbon content and a reasonable negative correlation with the oxygen content. Ratio C/H indicating the aromaticity degree of humic samples did not show any significant correlation. Relatively high value of correlation coefficients provided also O + N and ratios C/(O + N) and C/O, respectively. In contrast, H, N content and natural and heat generated free radical content and their ratio gave substantially lower correlation coefficients. The latter indicates that free radicals are probably not the main reason of the collapse of the secondary structure of humic substances leading to their degradation.


Humic substances Isoconversional methods Single step approximation Correlation analysis Thermal analysis 



The financial support of Grant Agency of the Czech Republic, Project 104/05/P513 and Ministry of Education, Project MSM 0021630501 are acknowledged.


  1. 1.
    Dell’Abate MT, Benedetti A, Brookes PC. Hyphenated techniques of thermal analysis for characterisation of soil humic substance. J Sep Sci. 2003;26:433–40.CrossRefGoogle Scholar
  2. 2.
    Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–32.CrossRefGoogle Scholar
  3. 3.
    Benites VM, Mendonça ES, Schaefer CEGR, Novotny EH, Reis EL, Ker JC. Properties of black soil humic acids from high altitude rocky complexes in Brazil. Geoderma. 2005;127:104–13.CrossRefGoogle Scholar
  4. 4.
    Peuravuori J, Paaso N, Pihlaja K. Kinetic study of the thermal degradation of lake aquatic humic matter by thermogravimetric analysis. Thermochim Acta. 1999;325:181–93.CrossRefGoogle Scholar
  5. 5.
    Kučerík J, Kovář J, Pekař M. Thermoanalytical investigation of lignite humic acids fractions. J Therm Anal Calorim. 2004;76:55–65.CrossRefGoogle Scholar
  6. 6.
    Francioso O, Montecchio D, Gioacchini P, Ciavatta C. Thermal analysis (TG-DTA) and isotopic characterization (13C-15N) of humic acids from different origins. Appl Biochem. 2005;20:537–44.Google Scholar
  7. 7.
    Trompowsky PM, Benites VM, Madari BE, Pimenta AS, Hockaday WC, Hatcher PG. Characterization of humic-like substances obtained by chemical oxidation to eucalyptus charcoal. Org Geochem. 2005;36:1480–9.CrossRefGoogle Scholar
  8. 8.
    Kučerík J, Kovář J, Pekař M, Šimon P. Evaluation of oxidation stability of lignite humic substances by DSC induction period measurement. Naturwissenschaften. 2005;92:336–40.CrossRefGoogle Scholar
  9. 9.
    Kučerík J, Kamenářová D, Válková D, Pekař M, Kislinger J. The role of various compounds in humic acids stability studied by TG and DTA. J Therm Anal Calorim. 2006;84:715–20.CrossRefGoogle Scholar
  10. 10.
    Válková D, Kislinger J, Pekař M, Kučerík J. The kinetics of thermo-oxidative humic acids degradation studied by isoconversional methods. J Therm Anal Calorim. 2007;89:957–64.CrossRefGoogle Scholar
  11. 11.
    Stevenson FJ. Humus chemistry. Genesis, compositions, reactions. 2nd ed. NY: Wiley and Sons, Inc; 1994.Google Scholar
  12. 12.
    Barros N, Salgado J, Feijóo S. Calorimetry and soil. Thermochim Acta. 2007;458:11–7.CrossRefGoogle Scholar
  13. 13.
    Critter SAM, Freitas SS, Airoldi C. Comparison between microorganism counting and a calorimetric method applied to tropical soils. Thermochim Acta. 2002;394:133–44.CrossRefGoogle Scholar
  14. 14.
    Critter SAM, Freitas SS, Airoldi C. Microbial biomass and microcalorimetric methods in tropical soils. Thermochim Acta. 2002;394:145–54.CrossRefGoogle Scholar
  15. 15.
    Siewert C. Rapid screening of soil properties using thermogravimetry. Soil Sci Soc Am J. 2004;68:1656–61.Google Scholar
  16. 16.
    Siewert C. Investigation of the thermal and biological stability of soil organic mater. Aachen: Shaker-Verlag; 2001.Google Scholar
  17. 17.
    Pekař M, Kučerík J. Thermoanalytical approach to study soil dynamics. In: Zaujec A, Bielek P, Gonet SS, editors. Humic substances in ecosystems, vol 6, Bratislava; 2005, p. 130.Google Scholar
  18. 18.
    Kislinger J, Kučerík J. Relationship between soil respiration and kinetic parameters of thermo-oxidative degradation. In: Szpoganicz B, et al., editors. Livro de resumos do VII EBSH. Brasil: Florianopolis; 2007, p. 5.Google Scholar
  19. 19.
    Šimon P. Isoconversional methods. J Therm Anal Calorim. 2004;76:123–32.CrossRefGoogle Scholar
  20. 20.
    Šimon P. Induction periods. Theory and applications. J Therm Anal Calorim. 2006;84:263–70.CrossRefGoogle Scholar
  21. 21.
    Barančíková G, Klučáková M, Madaras M, Makovníková J, Pekař M. Chemical structure of humic acids isolated from various soil types and lignite. In: Humic substances in the environment, vol 3, Bratislava; 2003, p. 3.Google Scholar
  22. 22.
    Čežíková J, Kozler J, Madronová L, Novák J, Janoš P. Humic acids from coal of North-Bohemian coal field. I. Preparation and characterisation. React Funct Polym. 2001;47:101–9.CrossRefGoogle Scholar
  23. 23.
    Novák J, Kozler J, Čežíková J, Janoš P, Tokarová V, Madronová L. Humic acids from coal of North-Bohemian coal field. II. Metal-binding capability under static conditions. React Funct Polym. 2001;47:111–7.CrossRefGoogle Scholar
  24. 24.
    Madronová L, Kozler J, Šeříková J, Novák J, Janoš P. Humic acids from coal of North-Bohemian coal field. III. Metal-binding properties—measurement in a column arrangement. React Funct Polym. 2001;47:119–23.CrossRefGoogle Scholar
  25. 25.
    Benites VM, Kučerík J, Madari BE. Thermal analysis of humic substances extracted from contrasting pedoenvironments. Chem Listy. 2005;99s:123–5.Google Scholar
  26. 26.
    Novák F, Kalousková N, Machovič V, Brus J. Composition and structure of fulvic acids from B-Horizon of Ferro-humic Podzol in Trojmezí (Bohemian Forest). J For Sci. 1999;45:554–65 (In Czech).Google Scholar
  27. 27.
    Cozzolino A, Piccolo A. Polymerization of dissolved humic substances catalyzed by peroxidase. Effects of pH and humic composition. Org Geochem. 2002;33:281–94.CrossRefGoogle Scholar
  28. 28.
    Šimon P. Considerations on the single-step kinetics approximation. J Therm Anal Calorim. 2005;82:651–7.CrossRefGoogle Scholar
  29. 29.
    Šimon P, Thomas PS, Okuliar J, Ray A. An incremental integral isoconversional method. J Therm Anal Calorim. 2003;72:867–74.CrossRefGoogle Scholar
  30. 30.
    Šimon P, Veverka M, Okuliar J. New screening method for the determination of stability of pharmaceuticals. J Int Pharm. 2004;270:21–36.CrossRefGoogle Scholar
  31. 31.
    Šimon P. The single-step approximation. Attributes, strong and weak sides. J Therm Anal Calorim. 2007;88:709–15.CrossRefGoogle Scholar
  32. 32.
    Cibulková Z, Šimon P, Lehocký P, Balko J. Antioxidant activity of p-henylenediamines studied by DSC. Polym Degrad Stab. 2005;87:479–86.CrossRefGoogle Scholar
  33. 33.
    Šimon P, Cibulková Z, Thomas P. Accelerated thermooxidative ageing tests and their extrapolation to lower temperatures. J Therm Anal Calorim. 2005;80:381–5.CrossRefGoogle Scholar
  34. 34.
    Šimon P, Hynek D, Malíková M, Cibulková Z. Extrapolation of accelerated thermooxidative tests to lower temperatures applying non-Arrhenius temperature functions. J Therm Anal Calorim. 2008;93:817–21.CrossRefGoogle Scholar
  35. 35.
    Klein E, Lukeš V, Cibulková Z, Polovková J. Study of N–H, O–H, and S–H bond dissociation enthalpies and ionization potentials of substituted anilines, phenols, and thiophenols. J Mol Struct THEOCHEM. 2006;758:149–59.CrossRefGoogle Scholar
  36. 36.
    Klein E, Lukeš V. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of sequential proton loss electron transfer mechanism of phenols antioxidant action: Correlation with phenolic C-O bond length. J Mol Struct THEOCHEM. 2007;805:153–60.CrossRefGoogle Scholar
  37. 37.
    Senesi N. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals, Part I. The electron spin resonance approach. Anal Chim Acta. 1990;232:51–75.CrossRefGoogle Scholar
  38. 38.
    Tam SC, Sposito G, Senesi N. Variability of elemental composition, organic structure, chemical functionality and solubility across a pine (Pinus ponderosa) litter layer. Soil Sci Soc Am J. 1991;55:1320–5.CrossRefGoogle Scholar
  39. 39.
    Martin-Neto L, Rossel R, Sposito G. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence. Geoderma. 1998;81:305–11.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • J. Kučerík
    • 1
  • J. Kislinger
    • 1
  • P. Majzlík
    • 1
  • M. Pekař
    • 1
  1. 1.Faculty of ChemistryBrno University of TechnologyBrnoCzech Republic

Personalised recommendations