Journal of Thermal Analysis and Calorimetry

, Volume 97, Issue 2, pp 721–727 | Cite as

New complexes of Ni(II) and Cu(II) with Schiff bases functionalised with 1,3,4-thiadiazole: spectral, magnetic, biological and thermal characterisation

  • Rodica Olar
  • Mihaela Badea
  • Dana Marinescu
  • Veronica Lazar
  • Carmen Chifiriuc


Schiff bases obtained by the condensation of 2-amino-5-mercapto-1,3,4-thiadiazole with 2,4-pentandione or 1-phenyl-1,3-butandione were synthesized and characterized in order to obtain polydentate ligands HL1 and HL2, respectively. The complexes with these ligands of the type M(L)Cl·nH2O [(1) M:Ni, L:L1, n = 0.5; (3) M:Ni, L:L2, n = 0.5]; [(2) M:Cu, L:L1, n = 1; (4) M:Cu, L:L2, n = 0] were also synthesized and characterized. The modifications evidenced in IR spectra of complexes were correlated with the presence of monodeprotonate Schiff bases. The electronic spectra display the characteristic pattern of square-planar stereochemistry. The in vitro qualitative and quantitative antimicrobial activity assays showed that the new complexes exhibited variable antimicrobial activity. The thermal analyses have evidenced the thermal intervals of stability and also the thermodynamic effects that accompany them. Schiff bases and complexes have a similar thermal behaviour. Processes as water elimination, melting, chloride anion removal as well as oxidative degradation of the organic ligands were observed.


Complexes Gram negative strain Gram positive strain Thermal behaviour 1,3,4-thiadiazole 



The VIASAN Romanian National Research Program 142/2006 financially supported this study.


  1. 1.
    Holla BS, Poojary KN, Rao BS, Shivanada MK. New bis-mercapto triazoles and bistriazolothiadiazoles as possible anticancer agents. Eur J Med Chem. 2002;37:511–7.CrossRefGoogle Scholar
  2. 2.
    Swamy SN, Basappa G, Priya BJ, Prabhuswany B, Doreswamy BH, Prasad JS, et al. Synthesis of pharmaceutically important condensed heterocyclic 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivatives as antimicrobials. Eur J Med Chem. 2006;41:531–8.CrossRefGoogle Scholar
  3. 3.
    Amir M, Kumar H, Javed SA. Synthesis and pharmacological evaluation of condensed heterocyclic 6-substituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives of naproxen. Bioorg Med Chem Lett. 2007;17:4504–8.CrossRefGoogle Scholar
  4. 4.
    Scozzafava A, Supuran CT. Protease inhibitors: synthesis of matrix metalloproteinase and bacterial collagenase inhibitors incorporating 5-amino-2-mercapto-1,3,4-thiadiazole zinc binding functions. Bioorg Med Chem Lett. 2002;12:2667–72.CrossRefGoogle Scholar
  5. 5.
    Jamloki A, Karthikeyan C, Hari Narayana Moorthy NS, Trivedi P. Bioorg Med Chem Lett. 2006;16:3847–54.CrossRefGoogle Scholar
  6. 6.
    Mastrolorenzo A, Scozzafava A, Supuran CT. Antifungal activity of Ag(I) and Zn(II) complexes of aminobenzolamide (5-sulfanilylamido-1,3,4-thiadiazole-2-sulfonamide) derivatives. J Enzyme Inhib. 2000;15:517–31.CrossRefGoogle Scholar
  7. 7.
    Chohan ZH, Pervez H, Rauf A, Scozzafava A, Supuran CT. Antibacterial Co(II), Cu(II), Ni(II) and Zn(II) complexes of thiadiazole derived furanyl, thiophenyl and pyrrolyl Schiff base. J Enzyme Inhib Med Chem. 2002;17:117–22.CrossRefGoogle Scholar
  8. 8.
    Chohan ZH, Pervez H, Rauf A, Supuran CT. Antibacterial role of SO(4), NO(3), C(2)O(4) and CH(3)CO(2) anions on Cu(II) and Zn(II) complexes of a thiadiazole-derived pyrrolyl Schiff base. Met Based Drugs. 2002;8:263–7.CrossRefGoogle Scholar
  9. 9.
    Chohan ZH, Scozzafava A, Supuran CT. Unsymmetrical 1,1′-disubstituted ferrocenes: synthesis of Co(II), Cu(II), Ni(II) and Zn(II) chelates of ferrocenyl-1-thiadiazolo-1′-tetrazole, -1-thiadiazolo-1′-triazole and -1-tetrazolo-1′-triazole with antimicrobial properties. J Enzyme Inhib Med Chem. 2002;17:261–6.CrossRefGoogle Scholar
  10. 10.
    Badea M, Olar R, Brezeanu M, Marinescu D, Segal E. Thermal stability and non-isothermal kinetic study of three coordination compounds of Cu(II). Thermochim Acta. 1996;279:183–90.CrossRefGoogle Scholar
  11. 11.
    Badea M, Olar R, Cristurean E, Marinescu D, Brezeanu M, Calina-Soradi C, et al. Thermal stability and non-isothermal decomposition kinetics. Heteropolynuclear compounds of Cu(II). J Therm Anal Calorim. 2000;59:977–84.CrossRefGoogle Scholar
  12. 12.
    Olar R, Badea M, Stanica N, Cristurean E, Marinescu D. Synthesis, characterisation and thermal behaviour of some complexes with ligands having 1,3,4-thiadiazole moieties. J Therm Anal Calorim. 2005;82:417–22.CrossRefGoogle Scholar
  13. 13.
    Konstantinoviæ SS, Radovanoviæ BC, Krklješ A. Thermal behaviour of Co(II), Ni(II), Cu(II), Zn(II), Hg(II) and Pd(II) complexes with isatin-â-thiosemicarbazone. J Therm Anal Calorim. 2007;90:525–31.CrossRefGoogle Scholar
  14. 14.
    Abou El-Enein SA. Polymeric and sandwich Schiff’s bases complexes derived from 4,4′-methylenedianiline: characterization and thermal investigation. J Therm Anal Calorim. 2008;91:929–36.CrossRefGoogle Scholar
  15. 15.
    Issa RM, Amer SA, Mansour IA, Abdel-Monsef AI. Thermal studies of bis salicylidene adipic dihydrazone derivatives and their complexes with divalent ions of Mn, Co, Ni, Cu and Zn. J Therm Anal Calorim. 2007;90:261–7.CrossRefGoogle Scholar
  16. 16.
    Aksu M, Durmus S, Sari M, Emregül KC, Svoboda I, Fuess H, et al. Investigation on the thermal decomposition some heterodinuclear NiII–MII complexes prepared from ONNO type reduced Schiff base compounds (MII=ZnII, CdII). J Therm Anal Calorim. 2007;90:541–7.CrossRefGoogle Scholar
  17. 17.
    Modi CK, Patel MN. Synthetic, spectroscopic and thermal aspects of some heterochelates. J Therm Anal Calorim. 2008;94:247–55.CrossRefGoogle Scholar
  18. 18.
    Patel SH, Pansuriya PB, Chhasatia MR, Parekh HM, Patel MN. Coordination chain polymeric assemblies of trivalent lanthanides with multidentate Schiff base synthetic, spectral investigation and thermal aspects. J Therm Anal Calorim. 2008;91:413–8.CrossRefGoogle Scholar
  19. 19.
    Fan YH, Gao ZX, Bi CF, Xie ST, Zhang X. Synthesis and thermal decomposition kinetics of La(III) complex with unsymmetrical Schiff base ligand. J Therm Anal Calorim. 2008;91:919–23.CrossRefGoogle Scholar
  20. 20.
    Lalia-Kantouri M, Tzavellas L, Paschalidis D. Novel lanthanide complexes with di-2-pyridyl ketone-p-chlorobenzoylhydrazone: thermal investigation by simultaneous TG/DTG-DTA and IR spectroscopy. J Therm Anal Calorim. 2008;91:937–42.CrossRefGoogle Scholar
  21. 21.
    Balotescu M-C, Oprea E, Petrache L-M, Bleotu C, Lazar V. Antibacterial, antifungal and cytotoxic activity of Salvia officinalis essential oil and tinctures. Roum Biotech Lett. 2005;10:2481–9.Google Scholar
  22. 22.
    Gajendragad NR, Agarwala U. Complexing behaviour of 1,3,4-thiadiazole-2-thiol-5-amino-I. J Inorg Nucl Chem. 1975;37:2429–34.CrossRefGoogle Scholar
  23. 23.
    Gajendragad NR, Agarwala U. Complexing behaviour of 5-amino-1,3,4-thiadiazole-2-thiol. II. Complexes of Ni(II), Rh(I), Pd(II), Pt(II), Au(III) and Cu(II). Bull Chem Soc Jpn. 1975;48:1024–9.CrossRefGoogle Scholar
  24. 24.
    Gajendragad NR, Agarwala U. Complexing behaviour of 5-amino-2-thiol-1,3,4-thiadiazole-: Part III—complexes of Cu(I), Zn(II), Ag(I), Cd(II), Tl(I), Pb(II), Pd(0) and Pt(0). Ind Chem Soc. 1975;13:1331–4.Google Scholar
  25. 25.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986. p. 207–27.Google Scholar
  26. 26.
    Lever ABP. Inorganic electronic spectroscopy. Amsterdam, London, New York: Elsevier; 1986. p. 507–54.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Rodica Olar
    • 1
  • Mihaela Badea
    • 1
  • Dana Marinescu
    • 1
  • Veronica Lazar
    • 2
  • Carmen Chifiriuc
    • 2
  1. 1.Faculty of Chemistry, Department of Inorganic ChemistryUniversity of BucharestBucharestRomania
  2. 2.Faculty of Biology, Department of MicrobiologyUniversity of BucharestBucharestRomania

Personalised recommendations