Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 1, pp 349–356 | Cite as

Synthesis and thermal decomposition kinetics of two lanthanide complexes with cinnamic acid and 2,2′-Bipyridine

  • L. Tian
  • N. Ren
  • J. J. Zhang
  • H. M. Liu
  • S. J. Sun
  • H. M. Ye
  • K. Z. Wu


The two complexes of [Ln(CA)3bipy]2 (Ln = Tb and Dy; CA = cinnamate; bipy = 2,2′-bipyridine) were prepared and characterized by elemental analysis, infrared spectra, ultraviolet spectra, thermogravimetry and differential thermogravimetry techniques. The thermal decomposition behaviors of the two complexes under a static air atmosphere can be discussed by thermogravimetry and differential thermogravimetry and infrared spectra techniques. The non-isothermal kinetics was investigated by using a double equal-double steps method, the nonlinear integral isoconversional method and the Starink method. The mechanism functions of the first decomposition step of the two complexes were determined. The thermodynamic parameters (ΔH , ΔG and ΔS ) and kinetic parameters (activation energy E and the pre-exponential factor A) of the two complexes were also calculated.


Thermal decomposition mechanism Non-isothermal kinetics Lanthanide complexes 



This project was supported by the National Natural Science Foundation of China (No. 20773034), the Natural Science Foundation of Hebei Province (No. B2007000237, No. E2009000307) and Education Department Scientific Research Fund from Hebei Province (2008469).


  1. 1.
    Yan B. Sol–gel preparation and luminescence of silica/polymer hybrid material incorporated with terbium complex. Mater Lett. 2003;57:2535–9.CrossRefGoogle Scholar
  2. 2.
    Ci YX, Li YZ, Chang WB. Fluorescence reaction of terbium(III) with nucleic acids in the presence of phenanthroline. Anal Chim Acta. 1991;248:589–94.CrossRefGoogle Scholar
  3. 3.
    Scott LK, Horrocks WD. Lanthanide ion luminescence as a probe of DNA structure. 2. Non-guanine-containing oligomers and nucleotides. J Inorg Biochem. 1992;46:193–205.CrossRefGoogle Scholar
  4. 4.
    Siqueira AB, Bannach G, Rodrigues EC, Carvalho CT, Ionashiro M. Solid-state 2-methoxybenzoates of light trivalent lanthanides synthesis, characterization and thermal behaviour. J Therm Anal Cal. 2008;91:897–902.CrossRefGoogle Scholar
  5. 5.
    Locatelli JR, Rodrigues EC, Siqueira AB, Ionashiro EY, Bannach G, Ionashiro M. Synthesis characterization and thermal behaviour of solid-state compounds of yttrium and lanthanide benzoates. J Therm Anal Cal. 2007;90:737–46.CrossRefGoogle Scholar
  6. 6.
    Li Y, Zheng FK, Liu X, Zou WQ, Guo GC, Lu CZ, et al. Crystal structures and magnetic and luminescent properties of a series of homodinuclear lanthanide complexes with 4-cyanobenzoic ligand crystal structures and magnetic and luminescent properties of a series of homodinuclear lanthanide complexes with 4-cyanobenzoic ligand. Inorg Chem. 2006;45:6308–16.CrossRefGoogle Scholar
  7. 7.
    Li GQ, Li Y, Zou WQ, Chen QY, Zheng FK, Guo GC. Synthesis and crystal structure of a new Lanthanum(III) 4-cyanobenzoate complex. Chin J Struct Chem. 2007;26:575–9.Google Scholar
  8. 8.
    Lam AWH, Wang W, Gao TS, Wen GH, Zhang XX. Synthesis, crystal structure, and photophysical and magnetic properties of dimeric and polymeric lanthanide complexes with benzoic acid and its derivatives. Eur J Inorg Chem 2003;2003:149–63.CrossRefGoogle Scholar
  9. 9.
    Ferenc W, Dziewulska-Kuaczkowska A, Sarzyski J, Paszkowska B. 4-Chloro-2-methoxybenzoates of heavy lanthanides(III) and yttrium(III) Thermal spectral and magnetic behaviour. J Therm Anal Cal. 2008;91:285–92.CrossRefGoogle Scholar
  10. 10.
    Ionashiro EY, Bannach G, Siqueira AB, de Carvalho CT, Rodrigues EC, Ionashiro M. 2-Methoxybenzylidenepyruvatewith heavier trivalent lanthanides and yttrium(III) synthesis and characterization. J Therm Anal Cal. 2008;92:953–9.CrossRefGoogle Scholar
  11. 11.
    Tian L, Ning Ren, Zhang JJ, Sun SJ, Ye HM, Bai JH, et al. Synthesis, crystal structure, and thermal decomposition kinetics of the complex of dysprosium benzoate with 2, 2′-bipyridine. J Chem Eng Data. 2009;54:69–74.CrossRefGoogle Scholar
  12. 12.
    Xu XL, Zhang JJ, Yang HF, Ren N, Zhang HY. Synthesis, crystal structure and thermal decomposition of a dysprosium(III) p-fluorobenzoate 1, 10-phenanthroline complex. J Chem Sci. 2007;62b:51–4.Google Scholar
  13. 13.
    Zhang HY, Zhang JJ, Ren N, Xu SL, Tian L, Bai JH. Synthesis, crystal structure and thermal decomposition mechanism of the complex [Sm(p-BrBA)3bipy·H2O]2·H2O. J Alloy Compd. 2008;464:277–81.CrossRefGoogle Scholar
  14. 14.
    Zhang JJ, Ren N, Bai JH, Xu SL. Synthesis and thermal decomposition reaction kinetics of complexes of [Sm2(m-ClBA)6(phen)2]·2H2O and [Sm2(m-BrBA)6(phen)2]·2H2O. J Chem Kinet. 2007;39:67–74.CrossRefGoogle Scholar
  15. 15.
    Tian L, Ren N, Zhang JJ, Liu HM, Bai JH, Ye HM, et al. Synthesis, crystal structure luminescence and thermal decomposition kinetics of Eu(III) complex with 2, 4-dichlorobenzoic acid and 2, 2′-bipyridine. Inorg Chim Acta. 2009;362:3388–94.CrossRefGoogle Scholar
  16. 16.
    Guo DF, He J, Zeng ZZ. Studies on interaction between ternary rare earth complexes of cinnamic acid and phenanthroline with DNA by spectroscopy. J Chin Rare Earth Soc. 2004;22:55–60.Google Scholar
  17. 17.
    Carvalho Filho MAS, Fernandes NS, Leles MIG, Mendes R, Ionashiro M. Preparation and thermal decomposition of solid-state cinnamates of lighter trivalent lanthanides. J Therm Anal Cal. 2000;59:669–74.CrossRefGoogle Scholar
  18. 18.
    Xie XM, Zeng ZZ. Syntheses, anti-inflammatory action and XPS of Ln (III) -1, 10-phenanthroline-cinnamic acid complexes. J Lanzhou Univ (Nat Sci). 2003;39:64–7.Google Scholar
  19. 19.
    Zhang JJ, Ren N. A new kinetic method of processing TA data. Chin J Chem. 2004;22:1459–62.Google Scholar
  20. 20.
    Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comp Sci. 1996;36:42–5.Google Scholar
  21. 21.
    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.CrossRefGoogle Scholar
  22. 22.
    Gao Z, Nakada M, Amasski I. A consideration of errors and accuracy in the isoconversional methods. Thermochim Acta. 2001;369:137–42.CrossRefGoogle Scholar
  23. 23.
    Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal Analysis Kinetics. 2nd ed. Beijing: Science Press; 2008. p. 151.Google Scholar
  24. 24.
    Wang RF, Jin LP, Wang MZ, Huang SH, Chen XT. Synthesis, crystal structure and luminescence of coordination compound of europium p-methylbenzoate with 2, 2′-Dipyridine. Acta Chim Sin. 1995;53:39–45.Google Scholar
  25. 25.
    Shi YZ, Sun XZ, Jiang YH. Spectra and Chemical Identification of Organic Compounds. Nanjing: Science and Technology Press; 1988. p. 98.Google Scholar
  26. 26.
    Deacon GB, Phillips RJ. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.CrossRefGoogle Scholar
  27. 27.
    An BL, Gong ML, Li MX, Zhang JM. Synthesis, structure and luminescence properties of samarium(III) and dysprosium(III) complexes with a new tridentate organic ligand. J Mol Struct. 2004;687:1–6.CrossRefGoogle Scholar
  28. 28.
    Lu ZR, Ding YC, Xu Y, Li BL, Zhang Y. TA Study on four-one-dimensional chain copper complexes with benzoylacetone or 1, 1, 1-trifluoro-3-(2-thenoyl)-acetone bridged through azobispyridine ligands. Chin J Inorg Chem (in Chinese). 2005;21:181–5.Google Scholar
  29. 29.
    Straszko J, Olstak-Humienik M, Mozejko J. Kinetics of thermal decomposition of ZnSO4·7H2O. Thermochim Acta. 1997;292:145–50.CrossRefGoogle Scholar
  30. 30.
    Olstak-Humienik M, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta. 2000;344:73–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • L. Tian
    • 1
    • 2
  • N. Ren
    • 3
  • J. J. Zhang
    • 1
  • H. M. Liu
    • 4
  • S. J. Sun
    • 1
    • 2
  • H. M. Ye
    • 1
    • 2
  • K. Z. Wu
    • 2
  1. 1.Experimental CenterHebei Normal UniversityShijiazhuangPeople’s Republic of China
  2. 2.College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangPeople’s Republic of China
  3. 3.Department of ChemistryHandan CollegeHandanPeople’s Republic of China
  4. 4.College of Chemistry and Pharmacy EngineeringHebei University of Science and TechnologyShijiazhuangPeople’s Republic of China

Personalised recommendations