Thermoanalytical studies of some sweeteners

  • Lucinéia Cristina de Carvalho
  • Milena Pinotti Segato
  • Ronaldo Spezia Nunes
  • Csaba Novak
  • Éder Tadeu Gomes Cavalheiro


The thermal decomposition behavior of acesulfame-K (ACK), aspartame (ASP), sodium cyclamate (SCL), saccharine (SAC), and sodium saccharine (SSA) were investigated. After re-crystallization of the commercial samples the compounds were characterized by using elemental analysis, IR spectroscopy and thermoanalytical techniques (TG/DTG, DTA, and DSC). Evidences of hydrate water loss were observed for SSA and ASP. Melting was detected for SSA and SAC. Each compound decomposed in a characteristics way. The decomposition of APS and SAC took place completely, while ACK, SCL and SSA resulted in K2SO4, Na2SO4, and Na2SO4, as residues respectively. The Flynn-Wall-Ozawa method for kinetic calculations was applied for the volatilization of saccharine resulting in E a = 80 ± 1 kJ mol−1 and log A = 7.36 ± 0.07 min−1.


Non-caloric sweeteners Thermal analysis TG DTA DSC 


  1. 1.
    Noble AC. Taste-aroma interactions. Trends Food Sci Technol. 1996;7:439–44.CrossRefGoogle Scholar
  2. 2.
    Taylor AJ, Linforth RST. Flavour release in the mouth. Trends Food Sci Technol. 1996;7:444–48.CrossRefGoogle Scholar
  3. 3.
    Fatibello-Filho O, Vieira IC, Gouveia ST, Calafatti SA, Guaritá-Santos AJM. Artificial sweeteners. Quim Nova. 1996;3:248–60.Google Scholar
  4. 4.
    Curini R, Ascenzo FD, Lucchetti MC, Wendlandt WW. Thermoanalytical techniques applied to the analysis of an Italian soft cheese—a critical comparison with the official methods of analysis. Thermochim Acta. 1989;144:301–12.CrossRefGoogle Scholar
  5. 5.
    Dollimore D. The application of thermal-analysis in studying the thermal-decomposition of solids. Thermochim Acta. 1992;203:7–23.CrossRefGoogle Scholar
  6. 6.
    Simão AM. Aditivos Para Alimentos Sob o Aspecto Toxicológico. São Paulo: Nobel; 1985. p. 231.Google Scholar
  7. 7.
    Chen QC, Wang J. Simultaneous determination of artificial sweeteners, preservatives, caffeine, theobromine and theophylline in food and pharmaceutical preparations by ion chromatography. J Chromatogr. 2001;937:57–64.CrossRefGoogle Scholar
  8. 8.
    Conceição MM, Melo AML, Narain N, Santos IMG, Souza AG. Isothermal kinetic study of corn and its derivatives. J Therm Anal Cal. 2002;67:373–9.CrossRefGoogle Scholar
  9. 9.
    Silva SA, Conceição MM, Souza AG, Cavalheiro JMO, Alencar ALS, Prasad S. Calorimetry and thermogravimetric study of algaroba [Prosopis juliflora (SW) D. C.]. Quim Nova. 2001;24:460–4.Google Scholar
  10. 10.
    Silva SA, Conceição MM, Souza AG, Macedo RO. Calorimetric and kinetic parameters of manioc derivatives. Thermochim Acta. 1999;328:177–81.CrossRefGoogle Scholar
  11. 11.
    Souza FS, Macedo RO, Veras JWE. Studies of cimetidine pre-formulated and tablets for TG and DSC coupled to the photovisual system. Thermochim Acta. 2002;99:392–3.Google Scholar
  12. 12.
    Neville GA, Ethier JC. J AOAC Int. 1971;54:1200.Google Scholar
  13. 13.
    Imai Y, Kamada J-I. Vibrational spectra of saccharin nitranion and its orientation on the surface of silver metal particles. Spectrochim Acta A. 2005;61:711–5.CrossRefGoogle Scholar
  14. 14.
    Khurana HK, Cho IK, Shim JY, Li QX, Jun S. Application of multibounce attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks. J Agric Food Chem. 2008;56:778–83.CrossRefGoogle Scholar
  15. 15.
    Armenta S, Garrigues S, de la Guardia M. FTIR determination of aspartame and acesulfame-K in tabletop sweeteners. J Agric Food Chem. 2004;52:7798–803.CrossRefGoogle Scholar
  16. 16.
    Silverstein RM, Bassler GC, Morrill TC. Spectrometric identification of organic compounds. 5th ed. New York: John Willey; 1991.Google Scholar
  17. 17.
    Leung SS, Padden BE, Munson EJ, Grant DJW. Hydration and dehydration behavior of aspartame hemihydrate. J Pharm Sci. 1998;87:508–13.CrossRefGoogle Scholar
  18. 18.
    Cheng YD, Lin SY. Isothermal Fourier transform infrared microspectrosopic studies on the stability kinetics of solid-state intramolecular cyclization of aspartame sweetener. J Agric Food Chem. 2000;48:631–5.CrossRefGoogle Scholar
  19. 19.
    Simencio RL. Potencialidade do uso de tratamentos quimiométricos de dados termogravimétricos: formulação farmacêutica e adoçante artificial. Msc Dissertation, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brasil; 2005.Google Scholar
  20. 20.
    Conceição MM, Fernandes VJ Jr, Souza AG, Nascimento TC, Aragão CFS, Macedo RO. Study of thermal degradation of aspartame and its products of conversion in sweetener using isothermal thermogravimetry and HPLC. Thermochim Acta. 2005;433:163–9.CrossRefGoogle Scholar
  21. 21.
    Budavari S (ed). The Merck Index, 13th edn, Merck, Whitehouse Station; 1996.Google Scholar
  22. 22.
    Naumov P, Jovanovski G, Abbrent S, Tergenius LE. Thermal behavior of the saccharinates of K+, Na+, Rb+, Cs+ and NH4+: structural inferences. Thermochim Acta. 2000;359:123–30.CrossRefGoogle Scholar
  23. 23.
    Pouchert CJ. The Aldrich Library of FT-IR Spectra, v. 2. Milwaukee, Wisconsin, USA: Aldrich Chemical Company; 1985.Google Scholar
  24. 24.
    Bernal C, Couto AB, Breviglieri ST, Cavalheiro ETG. Influence of some experimental parameters on the results of differential scanning calorimetry-DSC. Quim Nova. 2002;25:849–55.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Lucinéia Cristina de Carvalho
    • 1
  • Milena Pinotti Segato
    • 1
    • 3
  • Ronaldo Spezia Nunes
    • 1
  • Csaba Novak
    • 2
  • Éder Tadeu Gomes Cavalheiro
    • 1
  1. 1.Departamento de Química e Física MolecularInstituto de Química de São Carlos, USPSão CarlosBrazil
  2. 2.Hungarian Academy of Sciences, Research Group of Technical Analytical ChemistryBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Instituto de QuímicaUNICAMPCampinasBrazil

Personalised recommendations