Journal of Thermal Analysis and Calorimetry

, Volume 100, Issue 1, pp 219–223 | Cite as

Electrical conductivity studies on some dibenzoylmethane arylhydrazones (DBMAH)

  • Y. M. Issa
  • H. Hassib
  • W. S. Mohamed


Electrical conductivity of some dibenzoylmethane arylhydrazones (DBMAH) were measured during heating and reheating runs. The observed variation of the conductance of the polycrystalline sample during thermal agitation was found to depend on the ordering and disordering of molecules which in turn cause the lattice dipole to distort. A semiconducting behavior was detected for these systems as it was deduced from their conductance values (1.7 × 10−6 − 8.25 × 10−7 ohm−1 cm−1). The presence of substituents affects markedly the measured electrical conductivity and calculated activation energy values.


Hydrazones Dibenzoylmethane Electrical conductivity Activation energy 


  1. 1.
    Pati S, editor. The chemistry of the hydrazo, azo and azoxy groups. London: Wiley; 1975.Google Scholar
  2. 2.
    Druckrey H, Preussman R, Matzkies F, Matzkies F, Ivankovic S. Carcinogene wirkung von 1,2-diathylhydrazin an ratten. Naturwissen Schaften. 1966;53:557.CrossRefGoogle Scholar
  3. 3.
    Toth B. Tumorigenesis studies with 1, 2-dimethylhydrazine dihydrochloride, hydrazine sulfate, and isonicotinic acid in golden Hamster. Cancer Res. 1972;32:804–7.Google Scholar
  4. 4.
    Luckens RJ. Chemistry of antifungal action. Berlin: Springer Verlag; 1972.Google Scholar
  5. 5.
    El-Nagdi MH, Kassab NAL, Sobhy MEE, Hamza MR, Wahby MV. Reaction of arylhydrazones with Grignard reagents. J Prakt Chem. 1972;314:815–21.CrossRefGoogle Scholar
  6. 6.
    El-Nagdi MH, Abdallah SO. Reacions with the arylhtdrazones of some α-cyanoketones. J Prakt Chem. 1973;315:1009–16.CrossRefGoogle Scholar
  7. 7.
    Emsly J. The composition, structure and hydrogen bonding of the β-diketones. Struct Bonding. 1984;57:147–91.CrossRefGoogle Scholar
  8. 8.
    Vojta GM, Etterant MC. The use of solid-state NMR and X-ray crystallography as complementary tools for studying molecular recognition. J Mol Graphics. 1989;7:3–11.CrossRefGoogle Scholar
  9. 9.
    Kopleva TS, Shigoin DN. Theoretical study of proton encircling modes in proton sponges with tetraamido/diamido qudermized macrocycles: thr role of π-conjugation and aliphatic bridges. Russ J Phys Chem. 1974;48:312.Google Scholar
  10. 10.
    Frisch MJ, Schneiner AC, Shaeffer III HF, Binkley JS. The malonaldehyde equilibrium geometry: a major structural shift due to the effects of electron correlation. J Chem Phys. 1985;82:4194.CrossRefGoogle Scholar
  11. 11.
    Bertolassi V, Ferreti V, Gilli P, Issa YM, Sherif OE. Intramolecular N-H.….O Hydrogen bonding assisted by resonance, Part 2-Intercorrelation between structural and spectroscopic parameters for five 1, 3-diketone arylhydrazones derived from dibenzoylmethane. J Chem Soc Perkin Trans. 1993;2:2223–8.Google Scholar
  12. 12.
    Bertolassi V, Nanni L, Gilli P, Ferreti V, Gilli G, Issa YM. Sherif OE Intramolecular N-HOC hydrogen bonding assisted by resonance inter-correlation between structural and spectroscopic data for six β-biketo-arylhydrazones derived from bonzoylacetone or acetylacetone. New J Chem. 1994;18:251–61.Google Scholar
  13. 13.
    Salem AA, Issa YM, Ayad MI, El Kholy M. Electrical, spectral and thermochromic properties of some hydrazone derivatives. J Mat Sci Mat Electron. 1994;5:199–202.Google Scholar
  14. 14.
    Hassib HB, Issa YM, Mohamed WS. Electrical and thermal studies on some acetylacetone- and benzoylacetone-arylhydrazones. J Therm Anal Calorim. 2008;92:775–82.CrossRefGoogle Scholar
  15. 15.
    Phillips NE, Fisher RA. Superconducting-state energy gap parameters from specific heat measurements MgB2 and Na0.3CoO2·1.3H2O. J Therm Anal Calorim. 2005;81:631–5.CrossRefGoogle Scholar
  16. 16.
    Natividad E, Castro M, Burriel R, Angurel LA. Thermal conductance measurements of superconducting bi-2212 rods and a bi-2212-based current leadmodule. J Therm Anal Calorim. 2006;84:307–16.CrossRefGoogle Scholar
  17. 17.
    Shamsipur M, Taskhourian J, Sharghi H (2005) Development of a PVC-membrane ion-selective bulk optode, for UO2 2+ ion, based on tri-n-octylphosphine oxide and dibenzoylmethane. Anal Biomed Anal. doi:  10.1007/s00216-005-3225-1.
  18. 18.
    Stanimirov SS, Petkov IK (2008) Novel pH responsive luminescent poly(oxyethylene phosphate) tris (β-diketonate) europium (III) complexes. Cent Eur J Chem. doi:  10.2478/s11532-008-0035-2.
  19. 19.
    Gnanasoundary VG, Natarajan KK. Synthesis, characterization and catalytic studies of iron(III), cobalt(II), nickel(II) and copper(II) complexes containing triphenylphosphine and β-diketones. Transit Met Chem. 2005;30:433–8.CrossRefGoogle Scholar
  20. 20.
    Xu J, Xiong Q, Chen B, Wang L, Liu L, Xu W. Modeling the relative intensity ratio of Eu(III) complex in different solvents based on QSPR method. J Fluoresc. 2009;19:203–9.CrossRefGoogle Scholar
  21. 21.
    Sallam SA. Binuclear copper(II), nickel(II), and cobalt(II) complexes with N2O2 chromophores of glycylglycine Schiff-bases of acetylacetone, benzoylacetone and thenoyltrifluoroacetone. Transit Met Chem. 2006;31:46–55.CrossRefGoogle Scholar
  22. 22.
    Yao HC, Resnic P. J Am Chem Soc. 1962;84:3514.CrossRefGoogle Scholar
  23. 23.
    Abou Sekkina M, Issa YM. Further studies on semiconductivity in correlation with the optical properties of some related solid charge transfer complexes for their possible application in solar cells. Thermochim Acta. 1985;83:321–30.CrossRefGoogle Scholar
  24. 24.
    El-Ansary AL, Issa YM, Mohamed HA. Spectrophotometric studies on some β-diketo-arylhydrazones. Kolriszt Erte 1987;141–52.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations