Aggregation in aqueous media of tri-block copolymers tuned by the molecular selectivity of cyclodextrins



The water + cyclodextrin + poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) mixtures have been investigated to explore the temperature effect on the aggregation of the copolymer in the presence of cyclodextrins (CDs). The CDs with different cavity sizes were chosen because they may include either the hydrophilic poly(ethylene oxides) block or both kinds of blocks. The differential scanning calorimetry and viscosity experiments straightforwardly evidenced that the critical micellar temperature is shifted to larger values by adding a CD which is able to include the middle poly(propylene oxide) block while it is not influenced by the presence of CD which is selective to the poly(ethylene oxide) block. The enthalpy of aggregation decreases upon the CD addition for all the investigated systems.


Critical micellar temperature Enthalpy of aggregation F68 F88 F108 Hydroxypropyl-α-cyclodextrin Hydroxypropyl-β-cyclodextrin Pseudopolyrotaxanes 



The work was financially supported by the University of Palermo.


  1. 1.
    Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39:1033–46.CrossRefGoogle Scholar
  2. 2.
    De Lisi R, Lazzara G, Milioto S, Muratore N, Terekhova IV. Heat capacity study to evidence the interactions between cyclodextrin and surfactant in the monomeric and micellized states. Langmuir. 2003;19:7188–95.CrossRefGoogle Scholar
  3. 3.
    De Lisi R, Lazzara G, Milioto S, Muratore N. Volumes and heat capacities of the aqueous sodium dodecanoate/sodium perfluorooctanoate mixtures in the presence of β-cyclodextrins. Phys Chem Chem Phys. 2003;5:5084–90.CrossRefGoogle Scholar
  4. 4.
    Bernat V, Ringdard-Lefebvre C, Le Bas G, Perly B, Djedaïni-Pilard F. Inclusion complex of n-octyl β-d-glucopyranoside and α-cyclodextrin in aqueous solutions: thermodynamic and structural characterization. Langmuir. 2008;24:3140–9.CrossRefGoogle Scholar
  5. 5.
    Haller J, Katze U. Complexation versus micelle formation: α-cyclodextrin + n-decyltrimethylammonium bromide aqueous solutions. Chem Phys Lett. 2008;463:94–8.CrossRefGoogle Scholar
  6. 6.
    Guerrero-Martínez A, González-Gaitano G, Viñas MH, Tardajos G. Inclusion complexes between β-cyclodextrin and a gemini surfactant in aqueous solution: an NMR study. J Phys Chem B. 2006;110:13819–28.CrossRefGoogle Scholar
  7. 7.
    Mehta SK, Bhasin KK, Shilpee D, Singla ML. Micellar behavior of aqueous solutions of dodecyldimethylethylammonium bromide, dodecyltrimethylammonium chloride and tetradecyltrimethylammonium chloride in the presence of α-, β-, HPβ- and γ-cyclodextrins. J Colloid Interface Sci. 2008;321:442–51.CrossRefGoogle Scholar
  8. 8.
    Nicolle GM, Merbach AE. Destruction of perfluoroalkyl surfactant aggregates by β-cyclodextrin. Chem Commun. 2004;7:854−5.CrossRefGoogle Scholar
  9. 9.
    Terekhova IV, De Lisi R, Lazzara G, Milioto S, Muratore N. Volume and heat capacity studies to evidence interactions between cyclodextrins and nicotinic acid in water. J Therm Anal Calorim. 2008;92:285–90.CrossRefGoogle Scholar
  10. 10.
    Wan Yunus WMZ, Taylor J, Bloor DM, Hall DG, Wyn-Jones E. Electrochemical measurements on the binding of sodium dodecyl sulfate and dodecyltrimethylammonium bromide with α- and β-cyclodextrins. J Phys Chem. 1992;96:8979–82.CrossRefGoogle Scholar
  11. 11.
    Funasaki N, Ishikawa S, Neya S. Proton NMR study of α-cyclodextrin inclusion of short-chain surfactants. J Phys Chem B. 2003;107:10094−9.CrossRefGoogle Scholar
  12. 12.
    Guo QX, Li ZZ, Ren T, Zhu XQ, Liu YC. Inclusion complexation of sodium alkyl sulfates with β-cyclodextrin. A 1H NMR study. J Inclusion Phenom Mol Recognit Chem. 1994;17:149–56.CrossRefGoogle Scholar
  13. 13.
    Cabaleiro-Lago C, Nilsson M, Soderman O. Self-diffusion NMR studies of the host−guest interaction between β-cyclodextrin and alkyltrimethylammonium bromide surfactants. Langmuir. 2005;21:11637–44.CrossRefGoogle Scholar
  14. 14.
    Xing H, Lin S, Yan P, Jin-Xin X. Demicellization of a mixture of cationic−anionic hydrogenated/fluorinated surfactants through selective inclusion by α- and β-cyclodextrin. Langmuir. 2008;24:10654–64.CrossRefGoogle Scholar
  15. 15.
    Xing H, Lin SS, Yan P, Xiao JX, Chen YM. NMR studies on selectivity of β-cyclodextrin to fluorinated/hydrogenated surfactant mixtures. J Phys Chem B. 2007;111:8089–95.CrossRefGoogle Scholar
  16. 16.
    Milioto S, Bakshi MS, Crisantino R, De Lisi R. Thermodynamic properties of water-β-cyclodextrin-dodecylsurfactant ternary systems. J Solution Chem. 1995;24:103–20.CrossRefGoogle Scholar
  17. 17.
    De Lisi R, Milioto S, De Giacomo A, Inglese A. Thermodynamic properties of sodium n-perfluoroalkanoates in water and in water + cyclodextrins mixtures. Langmuir. 1999;15:5014–22.CrossRefGoogle Scholar
  18. 18.
    De Lisi R, Milioto S, Pellerito A, Inglese A. Thermodynamic properties of sodium n-alkanecarboxylates in water and in water + cyclodextrins mixtures. Langmuir. 1998;14:6045–53.CrossRefGoogle Scholar
  19. 19.
    Harada A, Li J, Kamachi M. Preparation and properties of inclusion complexes of polyethylene glycol with α-cyclodextrin. Macromolecules. 1993;26:5698–703.CrossRefGoogle Scholar
  20. 20.
    Harada A, Kamachi M. Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules. 1990;23:2821–3.CrossRefGoogle Scholar
  21. 21.
    Harada A, Kamachi M. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature. 1992;356:325–7.CrossRefGoogle Scholar
  22. 22.
    Wenz G, Han BH, Muller A. Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev. 2006;106:782–817.CrossRefGoogle Scholar
  23. 23.
    Hunt MA, Tonelli AE, Balik CM. Effect of guest hydrophobicity on water sorption behavior of oligomer/α-cyclodextrin inclusion complexes. J Phys Chem B. 2007;111:3853–8.CrossRefGoogle Scholar
  24. 24.
    Peet J, Rusa CC, Hunt MA, Tonelli AE, Balik CM. Solid-state complexation of poly(ethylene glycol) with α-cyclodextrin. Macromolecules. 2005;38:537–41.CrossRefGoogle Scholar
  25. 25.
    Lo Nostro P, Lopes JR, Cardelli C. Formation of cyclodextrin-based polypseudorotaxanes: solvent effect and kinetic study. Langmuir. 2001;17:4610–5.CrossRefGoogle Scholar
  26. 26.
    Jing B, Chen X, Hao J, Qiu H, Chai Y, Zhang G. Supramolecular self-assembly of polypseudorotaxanes in ionic liquid. Colloids Surf A Physicochem Eng Asp. 2007;192:51–5.CrossRefGoogle Scholar
  27. 27.
    Lazzara G, Milioto S. Copolymer−cyclodextrin inclusion complexes in water and in the solid state. A physico-chemical study. J Phys Chem B. 2008;12:11887–95.CrossRefGoogle Scholar
  28. 28.
    Li J, Ni X, Zhou Z, Leong KW. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and α-cyclodextrin. J Am Chem Soc. 2003;125:1788–95.CrossRefGoogle Scholar
  29. 29.
    Gaitano GG, Brown W, Tardajos G. Inclusion complexes between cyclodextrins and triblock copolymers in aqueous solution: a dynamic and static light-scattering study. J Phys Chem B. 1997;101:710–9.CrossRefGoogle Scholar
  30. 30.
    Li J, Li X, Zhou Z, Ni X, Leong KW. Formation of supramolecular hydrogels induced by inclusion complexation between pluronics and α-cyclodextrin. Macromolecules. 2001;34:7236–7.CrossRefGoogle Scholar
  31. 31.
    Joseph J, Dreiss CA, Cosgrove T, Pedersen JS. Rupturing polymeric micelles with cyclodextrins. Langmuir. 2007;23:460–6.CrossRefGoogle Scholar
  32. 32.
    Fujita H, Ooya T, Yui N. Synthesis and characterization of a polyrotaxane consisting of β-cyclodextrins and a poly(ethylene glycol)-poly(propylene glycol) triblock copolymer. Macromol Chem Phys. 1999;200:706–13.CrossRefGoogle Scholar
  33. 33.
    Udachin KA, Wilson LD, Ripmeester JA. Solid polyrotaxanes of polyethylene glycol and cyclodextrins: the single crystal X-ray structure of PEG−β-cyclodextrin. J Am Chem Soc. 2000;122:12375–6.CrossRefGoogle Scholar
  34. 34.
    Lazzara G, Milioto S, Muratore N. Solubilization of an organic solute in aqueous solutions of unimeric block copolymers and their mixtures with monomeric surfactant: volume, surface tension, differential scanning calorimetry, viscosity, and fluorescence spectroscopy studies. J Phys Chem B. 2008;112:5616–25.CrossRefGoogle Scholar
  35. 35.
    Da Silva RC, Olofsson G, Schillen K, Loh W. Influence of ionic surfactants on the aggregation of poly(ethylene oxide)−poly(propylene oxide)−poly(ethylene oxide) block copolymers studied by differential scanning and isothermal titration calorimetry. J Phys Chem B. 2008;106:1239–46.CrossRefGoogle Scholar
  36. 36.
    Dwyer C, Viebke C, Meadows J. Propofol induced micelle formation in aqueous block copolymer solutions. Colloid Surf A Physicochem Eng Asp. 2005;254:23–30.CrossRefGoogle Scholar
  37. 37.
    De Lisi R, Lazzara G, Lombardo R, Milioto S, Muratore N, Turco Liveri ML. Thermodynamic behavior of non-ionic tri-block copolymers in water at three temperatures. J Solution Chem. 2006;35:659–78.CrossRefGoogle Scholar
  38. 38.
    Alexandridis P, Holzwarth JF, Hatton TA. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules. 1994;27:2414–25.CrossRefGoogle Scholar
  39. 39.
    Patterson I, Armstrong J, Chowdhry B, Leharne S. Thermodynamic model fitting of the calorimetric output obtained for aqueous solutions of oxyethylene-oxypropylene-oxyethylene triblock copolymers. Langmuir. 1997;13:2219–26.CrossRefGoogle Scholar
  40. 40.
    De Lisi R, Lazzara G, Milioto S, Muratore N. Volumes of aqueous block copolymers based on poly(propylene oxides) and poly(ethylene oxides) in a large temperature range: a quantitative description. J Chem Thermodyn. 2006;38:1344–50.CrossRefGoogle Scholar
  41. 41.
    Lazzara G, Milioto S, Gradzielski M. The solubilisation behaviour of some dichloroalkanes in aqueous solutions of PEO-PPO-PEO triblock copolymers: a dynamic light scattering, fluorescence spectroscopy, and SANS study. Phys Chem Chem Phys. 2006;8:2299–312.CrossRefGoogle Scholar
  42. 42.
    Wen XG, Verrall RE, Liu GJ. Effect of anesthetic molecules (halothane and isoflurane) on the aggregation behavior of POE-POP-POE triblock copolymers. J Phys Chem B. 1997;103:2620–6.CrossRefGoogle Scholar
  43. 43.
    Ikeda T, Lee WK, Ooya T, Yui N. Thermodynamic analysis of inclusion complexation between α-cyclodextrin-based molecular tube and poly(ethylene oxide)-block-poly(tetrahydrofuran)-block-poly(ethylene oxide) triblock copolymer. J Phys Chem B. 2003;107:14–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Dipartimento di Chimica Fisica “F. Accascina”Università degli Studi di Palermo, Viale delle ScienzePalermoItaly

Personalised recommendations