Controlled rate thermal analysis of sepiolite

  • Ray L. Frost
  • János Kristóf
  • Erzsébet Horváth


Controlled rate thermal analysis (CRTA) technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as sepiolite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal changes in the sepiolite as the sepiolite is converted to an anhydride. In the dynamic experiment two dehydration steps are observed over the ~20–170 and 170–350 °C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201–337, 337–638 and 638–982 °C. The CRTA technology enables the separation of the thermal decomposition steps.


Attapulgite Sepiolite Palygorskites Thermal analysis CRTA Thermogravimetry 



This research was supported by the Hungarian Scientific Research Fund (OTKA) under Grant No. K62175. The financial and infra-structure support of the Queensland University of Technology Inorganic Materials Research Program is gratefully acknowledged. One of the authors (LMD) is grateful to the CRC for polymers for a Masters scholarship.


  1. 1.
    Caillere S, Henin S. The application of differential thermal analysis to the study of the clay minerals found in soils. Ann Agron. 1947;17:23–72.Google Scholar
  2. 2.
    Sudo T, Hayashi H. New types of clay minerals with long spacings at about 30 A. found from the altered area developed around certain ore bodies of the Hanaoka Mine, Akita Prefecture. Sci Rep Tokyo Kyoiku Daigaku C Geol Miner Geogr. 1955;3:281–94.Google Scholar
  3. 3.
    Koltermann M, Rauschenfels E, Pfefferkorn H. The thermal behavior of sepiolite. Tonind Ztg Keram Rundschau. 1964;88:132–4.Google Scholar
  4. 4.
    Murat M, Gielly J. Reactions of dehydration and dehydroxylation of clay minerals studies by electric conductivity measurements and differential thermal analysis. Bull Groupe Fr Argiles. 1969;21:151–76.Google Scholar
  5. 5.
    Hayashi H, Otsuka R, Imai N. Infrared study of sepiolite and palygorskite on heating. Am Mineral. 1969;54:1613–24.Google Scholar
  6. 6.
    Vicente MA, Suarez M, Lopez-Gonzalez JDD, Banares-Munoz MA. Characterization, surface area, and porosity analysis of the solids obtained by acid leaching of a saponite. Langmuir. 1996;12:566–72.CrossRefGoogle Scholar
  7. 7.
    Kinoshita R, Ichimura Y, Onodera J, Niimura N, Nakayama Y, Higuchi T. The optimization of the TG/DTA-MS measurements and the application for the material analysis. J Mass Spectrom Soc Jpn. 1998;46:365–73.Google Scholar
  8. 8.
    Brigatti MF, Franchini GC, Medici L, Poppi L, Stewart A. Behavior of sepiolite in Co2+ Cu2+ and Cd2+ removal from a simulated pollutant solution. Ann Chim (Rome). 1998;88:461–70.Google Scholar
  9. 9.
    Yariv S, Lapides I. The effect of mechanochemical treatments on clay minerals and the mechanochemical adsorption of organic materials onto clay minerals. J Mater Synth Process. 2000;8:223–33.CrossRefGoogle Scholar
  10. 10.
    Cebulak S, Langier-Kuzniarowa A. Some remarks on the methodology of thermal analysis of clay minerals. J Therm Anal Calorim. 1998;53:375–81.CrossRefGoogle Scholar
  11. 11.
    Perez-Rodriguez JL, Galan E. Determination of impurity in sepiolite by thermal analysis. J Therm Anal. 1994;42:131–41.CrossRefGoogle Scholar
  12. 12.
    Aramendia MA, Borau V, Corredor JI, Jimenez C, Marinas JM, Ruiz JR, et al. Characterization of the structure and catalytic activity of Pt/sepiolite catalysts. J Colloid Interface Sci. 2000;227:469–75.CrossRefGoogle Scholar
  13. 13.
    Fernandez Alvarez T. Studies of pore structure of various solids by nitrogen adsorption. I. Natural sepiolites activated by hydrochloric acid. In: Proceedings of the international clay conference; 1973. p. 571–82.Google Scholar
  14. 14.
    Serna C, Ahlrichs JL, Serratosa JM. Folding in sepiolite crystals. Clays Clay Miner. 1975;23:452–7.CrossRefGoogle Scholar
  15. 15.
    Serna C, Rautureau M, Prost R, Tchoubar C, Serrarosa JM. Study of sepiolite with the aid of data from electronic microscopy, thermogravimetric analysis, and infrared spectroscopy. Bulletin du Groupe Francais des Argiles. 1974;26:153–63.Google Scholar
  16. 16.
    Nagata H, Sudo T. Dehydration and dehydroxylation of sepiolite. In: Proceedings of the 5th international conference on thermal analysis; 1977. p. 534–7.Google Scholar
  17. 17.
    Yariv S. Combined DTA-mass spectrometry of organo-clay complexes. J Therm Anal. 1990;36:1953–61.CrossRefGoogle Scholar
  18. 18.
    Serna C, Ahlrichs JL, Serratosa JM. Sepiolite anhydride and crystal folding. Clays Clay Miner. 1975;23:411–2.CrossRefGoogle Scholar
  19. 19.
    Serna C, VanScoyoc GE, Ahlrichs JL. Hydroxyl groups and water in palygorskite. Am Mineral. 1977;62:784–92.Google Scholar
  20. 20.
    Serna C, VanScoyoc GE, Ahlrichs JL. Uncoupled water found in palygorskite. J Chem Phys. 1976;65:3389–90.CrossRefGoogle Scholar
  21. 21.
    Frost RL, Erickson KL. Thermal decomposition of synthetic hydrotalcites reevesite and pyroaurite. J Therm Anal Calorim. 2004;76:217–25.CrossRefGoogle Scholar
  22. 22.
    Horvath E, Kristof J, Frost RL, Heider N, Vagvoelgyi V. Investigation of IrO2/SnO2 thin film evolution by thermoanalytical and spectroscopic methods. J Therm Anal Calorim. 2004;78:687–95.CrossRefGoogle Scholar
  23. 23.
    Frost RL, Weier ML, Erickson KL. Thermal decomposition of struvite. J Therm Anal Calorim. 2004;76:1025–33.CrossRefGoogle Scholar
  24. 24.
    Frost RL, Erickson KL. Thermal decomposition of natural iowaite. J Therm Anal Calorim. 2004;78:367–73.CrossRefGoogle Scholar
  25. 25.
    Horvath E, Kristof J, Frost RL, Redey A, Vagvolgyi V, Cseh T. Hydrazine-hydrate intercalated halloysite under controlled-rate thermal analysis conditions. J Therm Anal Calorim. 2003;71:707–14.CrossRefGoogle Scholar
  26. 26.
    Kristof J, Frost RL, Kloprogge JT, Horvath E, Mako E. Detection of four different OH groups in ground kaolinite with controlled-rate thermal analysis. J Therm Anal Calorim. 2002;69:77–83.CrossRefGoogle Scholar
  27. 27.
    Frost RL, Martens W, Ding Z, Kloprogge JT. DSC and high-resolution TG of synthesized hydrotalcites of Mg and Zn. J Therm Anal Calorim. 2003;71:429–38.CrossRefGoogle Scholar
  28. 28.
    Bouzaid J, Frost RL. Thermal decomposition of stichtite. J Therm Anal Calorim. 2007;89:133–5.CrossRefGoogle Scholar
  29. 29.
    Bouzaid JM, Frost RL, Martens WN. Thermal decomposition of the composite hydrotalcites of iowaite and woodallite. J Therm Anal Calorim. 2007;89:511–9.CrossRefGoogle Scholar
  30. 30.
    Bouzaid JM, Frost RL, Musumeci AW, Martens WN. Thermal decomposition of the synthetic hydrotalcite woodallite. J Therm Anal Calorim. 2006;86:745–9.CrossRefGoogle Scholar
  31. 31.
    Frost RL, Bouzaid JM, Musumeci AW, Kloprogge JT, Martens WN. Thermal decomposition of the synthetic hydrotalcite iowaite. J Therm Anal Calorim. 2006;86:437–41.CrossRefGoogle Scholar
  32. 32.
    Frost RL, Ding Z, Ruan HD. Thermal analysis of goethite. Relevance to Australian indigenous art. J Therm Anal Calorim. 2003;71:783–97.CrossRefGoogle Scholar
  33. 33.
    Frost RL, Erickson K, Weier M. Thermal treatment of moolooite. J Therm Anal Calorim. 2004;77:851–61.CrossRefGoogle Scholar
  34. 34.
    Frost RL, Kristof J, Martens WN, Weier ML, Horvath E. Thermal decomposition of sabugalite. J Therm Anal Calorim. 2006;83:675–9.CrossRefGoogle Scholar
  35. 35.
    Frost RL, Kristof J, Weier ML, Martens WN, Horvath E. Thermal decomposition of metatorbernite – a controlled rate thermal analysis study. J Therm Anal Calorim. 2005;79:721–5.CrossRefGoogle Scholar
  36. 36.
    Frost RL, Martens W, Adebajo MO. Synthesis of the mixed oxide catalysts based upon the nickel-copper hydrotalcites of the type NixCu6-xCr2(OH)16(CO3)*4H2O. J Therm Anal Calorim. 2005;81:351–5.CrossRefGoogle Scholar
  37. 37.
    Frost RL, Musumeci AW, Adebajo MO, Martens W. Using thermally activated hydrotalcite for the uptake of phosphate from aqueous media. J Therm Anal Calorim. 2007;89:95–9.CrossRefGoogle Scholar
  38. 38.
    Frost RL, Musumeci AW, Kloprogge JT, Weier ML, Adebajo MO, Martens W. Thermal decomposition of hydrotalcite with hexacyanoferrate(II) and hexacyanoferrate(III) anions in the interlayer. J Therm Anal Calorim. 2006;86:205–9.CrossRefGoogle Scholar
  39. 39.
    Frost RL, Weier ML. Thermal decomposition of humboldtine – a high resolution thermogravimetric and hot stage Raman spectroscopic study. J Therm Anal Calorim. 2004;75:277–91.CrossRefGoogle Scholar
  40. 40.
    Frost RL, Weier ML, Martens W. Thermal decomposition of jarosites of potassium, sodium and lead. J Therm Anal Calorim. 2005;82:115–8.CrossRefGoogle Scholar
  41. 41.
    Frost RL, Weier ML, Martens W. Thermal decomposition of liebigite: a high resolution thermogravimetric and hot-stage Raman spectroscopic study. J Therm Anal Calorim. 2005;82:373–81.CrossRefGoogle Scholar
  42. 42.
    Frost RL, Wills R-A, Kloprogge JT, Martens W. Thermal decomposition of ammonium jarosite (NH4)Fe3(SO4)2(OH)6. J Therm Anal Calorim. 2006;84:489–96.CrossRefGoogle Scholar
  43. 43.
    Frost RL, Wills R-A, Kloprogge JT, Martens WN. Thermal decomposition of hydronium jarosite (H3O)Fe3(SO4)2(OH)6. J Therm Anal Calorim. 2006;83:213–8.CrossRefGoogle Scholar
  44. 44.
    Lin Y-H, Adebajo MO, Frost RL, Kloprogge JT. Thermogravimetric analysis of hydrotalcites based on the takovite formula NixZn6-xAl2(OH)16(CO3)·4H2O. J Therm Anal Calorim. 2005;81:83–9.CrossRefGoogle Scholar
  45. 45.
    Musumeci AW, Silva GG, Martens WN, Waclawik ER, Frost RL. Thermal decomposition and electron microscopy studies of single-walled carbon nanotubes. J Therm Anal Calorim. 2007;88:885–91.CrossRefGoogle Scholar
  46. 46.
    Xi Y, Martens W, He H, Frost RL. Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. J Therm Anal Calorim. 2005;81:91–7.CrossRefGoogle Scholar
  47. 47.
    Frost RL, Kristof J, Horvath E, Kloprogge JT. The modification of hydroxyl surfaces of formamide-intercalated kaolinites synthesized by controlled rate thermal analysis. J Colloid Interface Sci. 2001;239:126–33.CrossRefGoogle Scholar
  48. 48.
    Frost RL, Kristof J, Horvath E, Kloprogge JT. Separation of adsorbed formamide and intercalated formamide using controlled rate thermal analysis methodology. Langmuir. 2001;17:3216–22.CrossRefGoogle Scholar
  49. 49.
    Frost RL, Kristof J, Horvath E, Martens WN, Kloprogge JT. Complexity of intercalation of hydrazine into kaolinite – a controlled rate thermal analysis and drift spectroscopic study. J Colloid Interface Sci. 2002;251:350–9.CrossRefGoogle Scholar
  50. 50.
    Ding Z, Frost RL. Controlled rate thermal analysis of nontronite. Thermochim Acta. 2002;389:185–93.CrossRefGoogle Scholar
  51. 51.
    Frost RL, Ding Z. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochim Acta. 2003;397:119–28.CrossRefGoogle Scholar
  52. 52.
    Frost RL, Kristof J, Ding Z, Horvath E. Controlled rate thermal analysis of formamide intercalated kaolinites. 2001 A Clay Odyssey, proceedings of the 12th international clay conference, Bahia Blanca, Argentina, 22–28 July 2001; 2003. p. 523–30.Google Scholar
  53. 53.
    Nagata H. Thermal analysis of sepiolite by means of DSC. Nendo Kagaku. 1977;17:1–11.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Ray L. Frost
    • 1
  • János Kristóf
    • 2
  • Erzsébet Horváth
    • 3
  1. 1.Inorganic Materials Research Program, School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia
  2. 2.Department of Analytical ChemistryUniversity of PannoniaVeszpremHungary
  3. 3.Department of Environmental Engineering and Chemical TechnologyUniversity of PannoniaVeszpremHungary

Personalised recommendations