Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 100, Issue 2, pp 695–700 | Cite as

Immersion enthalpy and the constants of Langmuir model in the 3-chloro phenol adsorption on activated carbon

  • Liliana Giraldo
  • Juan Carlos Moreno
Article

Abstract

The adsorption process of 3-chloro phenol from aqueous solution on a activated carbon prepared from African palm stone and which presents a specific surface area of 685 m2 g−1, a greater quantity of total acid groups and a pHPZC of 6.8 is studied. The adsorption isotherms are determined at pH values of 3, 5, 7, 9 and 11. The adsorption isotherms are fitted to the Langmuir model and the values of the maximum quantity adsorbed that are between 96.2 and 46.4 mg g−1 are obtained along with the constant KL with values between 0.422 and 0.965 L mg−1. The maximum quantity adsorbed diminishes with the pH and the maximum value for this is a pH of 5. The immersion enthalpies of the activated carbon in a 3-chloro phenol solution of constant concentration, of 100 mg L−1, are determined for the different pH levels, with results between 37.6 and 21.2 J g−1. Immersion enthalpies of the activated carbon in function of 3-chloro phenol solution concentration are determined to pH 5, of maximum adsorption, with values between 28.3 and 38.4 J g−1, and by means of linearization, the maximum immersion enthalpy is calculated, with a value of 41.67 J g−1. With the results of the immersion enthalpy, maximum quantity adsorbed and the constant KL, establish relations that describe the adsorption process of 3-chloro phenol from aqueous solution on activated carbon.

Keywords

3-chloro phenol Activated carbon Adsorption capacity Immersion enthalpy pH 

Notes

Acknowledgements

The authors wish to thank the Master Agreement established between the Universidad de los Andes and the Universidad Nacional de Colombia and the Memorandum of Understanding entered into by the Departments of Chemistry of both Universities.

References

  1. 1.
    Lin SH, Juang RSJ. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents. A review Environ Manag. 2009;90:1336–49.Google Scholar
  2. 2.
    McGuire MJ, Suffet IH. Treatment of water by granular activated carbon. Washington D.C: American Chemical Society; 1983.CrossRefGoogle Scholar
  3. 3.
    Mattson JS, Mark HB Jr. Activated carbon: surface chemistry and adsorption from solution. New York: Marcel Dekker; 1971.Google Scholar
  4. 4.
    Wang SL, Tzou YM, Lu YH, Sheng G. Removal of 3-chlorophenol from water using rice-straw-based carbon. J Hazard Mater. 2007;147:313–8.CrossRefGoogle Scholar
  5. 5.
    Hamdaoui O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: part. I. two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater. 2007;147:381–94.CrossRefGoogle Scholar
  6. 6.
    Merzougui Z, Addoun F. Effect of oxidant treatment of date pit activated carbons application of the treatment of waters. Desalination. 2008;222:394–403.CrossRefGoogle Scholar
  7. 7.
    Hsieh C.-T, Hsisheng T. Liquid-phase adsorption of phenol onto activated carbon prepared with different activation levels. J Colloid Interface Sci 2000;230:171–5.Google Scholar
  8. 8.
    Mohamed FSh, Khater WA, Mostafa MR. Characterization of phenols sorptive properties of carbons activated by sulphuric acid. Chem Eng J. 2006;116:47–52.Google Scholar
  9. 9.
    Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M. Adsorption of phenolic compounds by activated carbon - a critical review. Chemosphere. 2005;58:1049–70.CrossRefGoogle Scholar
  10. 10.
    Ahmaruzzaman M, Sharma DK. Adsorption of phenols from wastewater. J Colloid Interface Sci. 2005;287:14–24.CrossRefGoogle Scholar
  11. 11.
    Giraldo L, Moreno JC. Determinación de la entalpía de inmersión de carbón activado en soluciones acuosas de fenol y su relación con la capacidad de adsorción. Rev Colomb Quím. 2003;32:45–54.Google Scholar
  12. 12.
    Lopez-Ramon M, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon. 1999;37:1215–21.CrossRefGoogle Scholar
  13. 13.
    Ladino-Ospina Y, Giraldo L, Moreno-Piraján JC. Calorimetric study of the immersion heats of Lead (II) and Chromium (VI) from aqueous solutions of Colombian coffee husk. J Therm Anal Cal. 2005;81:435–40.CrossRefGoogle Scholar
  14. 14.
    Giraldo L, Moreno JC. Calorimetric determination of activated carbons in aqueous solutions. J Therm Anal Cal. 2007;89:589–94.CrossRefGoogle Scholar
  15. 15.
    Rytwo G, Ruiz-Hitzky E. Enthalpies of adsorption of methylene blue and crystal violet to montmorillonite. J Therm Anal Cal. 2003;71:751–9.CrossRefGoogle Scholar
  16. 16.
    Tseng RL, Wu FC, Juang RS. Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon. 2003;41:487–95.CrossRefGoogle Scholar
  17. 17.
    Moreno-Castilla C, Rivera-Utrilla J, López-Ramón MV, Carrasco-Marín F. Adsorption of some substituted phenols on activated carbons from a bituminous coal. Carbon. 1995;33:845–51.CrossRefGoogle Scholar
  18. 18.
    Eley DD, Pines H, Weisz PB, editors. Advances in Catalysis. New York: Academic Press; 1966.Google Scholar
  19. 19.
    Diaz CM, Briceño N, Baquero MC, Giraldo L, Moreno JC. Influence of temperature in the processes of carbonization and activation with CO2 in the obtainment of activated carbon from African Palm pit. Study of the modification of characterization parameters. Int J Chem. 2003;6:1–15.Google Scholar
  20. 20.
    Giraldo L, Moreno JC, Huertas JI. A heat conduction microcalorimeter to determination of the immersion heats of activated carbons into aqueous solutions. Inst Sci Technol. 2002;30:177–86.CrossRefGoogle Scholar
  21. 21.
    Zielenkiewicz W. Towards classification of calorimeters. J Therm Anal Cal. 2008;91:663–71.CrossRefGoogle Scholar
  22. 22.
    Turmuzi M, Daud WR, Tasirin SM, Takriff MS, Iyeke SE. Production of activated carbon from candlenut shell by CO2 activation. Carbon. 2004;42:453–5.CrossRefGoogle Scholar
  23. 23.
    Laszlo K, Tombacz E, Novak C. pH-dependent adsorption and desorption of phenol and aniline on basic activated carbon. Colloid Surf A:Physicochem Eng Aspects. 2007;306:95–101.CrossRefGoogle Scholar
  24. 24.
    Finnin BA, O’Neill MAA, Gaisford M, Beezer S, Hadgraft A, Sears J. Performance validation of step-isothermal calorimeters. J Therm Anal Cal. 2006;83:331–4.CrossRefGoogle Scholar
  25. 25.
    Wadsö I, Wadsö L. Systematic errors in isothermal micro and nanocalorimetry. J Therm Anal Cal. 2005;82:553–8.CrossRefGoogle Scholar
  26. 26.
    Rodriguez GA, Giraldo L, Moreno JC. Calorimetric study of the immersion enthalpies of activated carbon cloths in different solvents and aqueous solutions. J Therm Anal Cal. 2009; doi: 10.1007/s10973-007-8976-9.
  27. 27.
    Vieira EF, Cestari AR, Santos EB, Dias FS. Interaction of Ag(I), Hg(II) and Cu(II) with 1, 2-ethanedithiol immbilized on chitosan: thermochemical data from isothermal calorimetric. J Colloid Interface Sci. 2005;289:42–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Grupo de Investigación en Sólidos Porosos y Calorimetría, Departamento de Química, Facultad de CienciasUniversidad de Los AndesBogotáColombia

Personalised recommendations