Journal of Thermal Analysis and Calorimetry

, Volume 98, Issue 3, pp 877–883 | Cite as

Reversible unfolding of poplar iso-plastocyanins

  • V. I. Getov
  • G. R. Toromanov
  • G. K. Kostov
  • M. I. Dimitrov
  • A. Ch. Shosheva


We attempted to determine the experimental conditions under which poplar plastocyanin iso-forms PCa and PCb undergo reversible thermal unfolding studied by differential scanning calorimetry (DSC). Our results indicate that an exothermic unfolding process exists always in the presence of molecular oxygen. Reversible unfolding and almost perfect two-state transitions were exhibited in the presence of TCEP under anaerobic conditions. This suggests that the second endothermic peak is due to copper-site disulfide dimmers formed during thermal denaturation. The conformational thermal stability of reduced PCbG (25 °C) = 33.9 kJ mol−1) has proven to be higher than that of reduced PCaG(25 °C) = 22.9 kJ mol−1).


Plastocyanin Iso-forms Differential scanning calorimetry Thermal stability 



This work was supported by grants of Fund “Scientific researches” of the Bulgarian Ministry of Education and Sciences (contract No. MY-Б-1511/2005 and No. Б-1519/05/2005).


  1. 1.
    Privalov P, Potekhin S. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51.CrossRefGoogle Scholar
  2. 2.
    Shosheva A, Donchev A, Dimitrov M, Kostov G, Toromanov G, Getov V, et al. Comperative study of the stability of poplar plastocyanin isoforms. Biochim Biophys Acta. 2005;1748(1):116–27.Google Scholar
  3. 3.
    Sanchez-Ruiz JM, Lopez-Lacomba JL, Cortijo M, Mateo PL. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry. 1988;27(5):1648–52.CrossRefGoogle Scholar
  4. 4.
    Sanchez-Ruiz JM. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J. 1992;61(4):921–35.CrossRefGoogle Scholar
  5. 5.
    Milardi D, La Rosa C, Grasso D. Extended theoretical analysis of irreversible thermal protein unfolding. Biophys Chem. 1994;52(3):183–9.CrossRefGoogle Scholar
  6. 6.
    Pappalardo M, Sciacca MFM, Milardi D, Grasso DM, La Rosa C. Thermodynamics of azurin folding. The role of copper ion. J Therm Anal Calorim. 2008;93(2):575–81.CrossRefGoogle Scholar
  7. 7.
    Sykes A. Structure and electron-transfer reactivity of the blue copper protein plastocyanin. Chem Soc Rev. 1985;14:283–315.CrossRefGoogle Scholar
  8. 8.
    Onodera J, Sugimura Y, Yoshizaki F. Novel plastocyanin containing phenyl-alanine-83 from the gymnosperm Ginkgo biloba. Protein Pept Lett. 2006;13(1):15–9.CrossRefGoogle Scholar
  9. 9.
    Dimitrov M, Donchev A, Egorov C, Atanasov B. Complete amino acid sequence of poplar plastocyanin. FEBS Lett. 1987;226:17–22.CrossRefGoogle Scholar
  10. 10.
    Dimitrov M, Donchev A, Egorov T. Microheterogeneity of Parsley plastocyanin. FEBS Lett. 1990;265:141–5.CrossRefGoogle Scholar
  11. 11.
    Dimitrov M, Donchev A, Egorov TA. Twin plastocyanin dimorphism in Tobacco. Biochim Biophys Acta. 1993;1203(2):184–90.Google Scholar
  12. 12.
    Burkey K, Gizelice Z, Carter T. Genetic variation in soybean phosphosynthetic electron transport capacity is related to plastocyanin concentration in the chloroplast. Photosynth Res. 1996;49:1411–90.CrossRefGoogle Scholar
  13. 13.
    Pesaresi P, Scharfenberg M, Weigel M, Granlund I, Schröder WP, Finazzi G, et al. Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Mol Plant 2009;2(2):236–48.CrossRefGoogle Scholar
  14. 14.
    Salah EA-G. Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in Arabidopsis thaliana grown at different copper regimes. Planta. 2009;229:767–79.CrossRefGoogle Scholar
  15. 15.
    Weigel M, Varotto C, Pesaresi P, Finazzi G, Rappoport F, Salmini F, et al. Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J Biol Chem. 2003;278(33):31286–9.CrossRefGoogle Scholar
  16. 16.
    Shosheva A, Donchev A, Dimitrov M, Zlatanov I, Toromanov G, Getov V, et al. Experimental and numerical study of the polar plastocyanin isoforms using Tyr as a probe for electrostatic similarity and dissimilarity. Biochim Biophys Acta. 2004;1698(1):67–75.Google Scholar
  17. 17.
    Dobrikova AG, Dimitrov MI, Taneva SG, Petkanchin IB. Protein-coated β-ferric hydrous oxide particles: an electrokinetic and electrooptic study. Colloid Surf B: Biointerface. 2007;56(1–2):114–20.CrossRefGoogle Scholar
  18. 18.
    Guzzi RC, Andolfi L, Cannistraro S, Verbeet MP, Canters GW, Sporelli L. Thermal stability of wild type and disulfide dridge containing mutant of poplar plastocyanin. Biophys Chem. 2004;112(1):35–43.CrossRefGoogle Scholar
  19. 19.
    Sanberg A, Haroson D, Göran Karlsson B. Thermal denaturation of spinach plastocyanin: effect of copper site oxidation state and molecular oxygen. Biochemistry. 2003;42(34):10301–10.CrossRefGoogle Scholar
  20. 20.
    Guzzi R, Sportelli L, La Rosa C, Milardi D, Grasso D, Verbeet MPh, et al. A spectroscopic and calorimetric investigation on the thermal stability of the Cys3Ala/Cys26Ala azurin mutant. Biophys J. 1999;77(2):1052–63.CrossRefGoogle Scholar
  21. 21.
    Sanberg A, Leckner J, Ying S, Schwarz F, Göran Karlsson B. Effects of metal ligation and oxygen on the reversibility of the thermal denaturation of Pseudomonas aeruginosa azurin. Biochemistry. 2002;41(3):1060–9.CrossRefGoogle Scholar
  22. 22.
    Feio M, Navarro J, Teixeira M, Harrison D, Göran Karlsson B, De la Rosa M. A thermal unfolding study of plastocyanin from the thermophilic cyanobacterium Phormidium laminosum. Biochemistry. 2004;43(46):14784–91.CrossRefGoogle Scholar
  23. 23.
    Gross E, Draheim J, Curtiss A, Crombie B, Scheffer A, Pan B, et al. Thermal denaturation of plastocyanin: the effect of oxidation state, reductants and anaerobicity. Arch Biochem Biophys. 1992;298:413–19.CrossRefGoogle Scholar
  24. 24.
    Privalov PL. Small globular proteins. Adv Protein Chem. 1979;33:167–241.CrossRefGoogle Scholar
  25. 25.
    Privalov PL, Khechinashvili NN. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974;86(3):665–84.CrossRefGoogle Scholar
  26. 26.
    Privalov PL. Thermodynamic bases of the stability of protein structure. Thermochim Acta. 1990;163:33–46.CrossRefGoogle Scholar
  27. 27.
    Pace NC, Grimsley GR, Thomas ST, Makhatadze GI. Heat capacity change for ribonuclease A folding. Protein Sci. 1999;8(7):1500–4.CrossRefGoogle Scholar
  28. 28.
    Loladze VV, Ermolenko DN, Makhatadze GI. Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Sci. 2001;10(7):1343–52.CrossRefGoogle Scholar
  29. 29.
    Murphy KP, Gill SJ. Solid model compounds and the thermodynamics of protein unfolding. J Mol Biol. 1991;22(3):2699–709.Google Scholar
  30. 30.
    Murphy KP, Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem. 1992;43:313–61.CrossRefGoogle Scholar
  31. 31.
    Makhatadze GI, Privalov PL. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425.CrossRefGoogle Scholar
  32. 32.
    Makhatadze GI, Lopez MM, Richardson JM III, Thomas ST. Anion binding to the ubiquitin molecule. Protein Sci. 1998;7(3):689–97.CrossRefGoogle Scholar
  33. 33.
    Spolar RS, Livingstone JR, Record MT Jr. Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry. 1992;31(16):3947–55.CrossRefGoogle Scholar
  34. 34.
    Milardi D, La Rosa C, Grasso D, Guzzi R, Sporelli L, Fini C. Thermodynamics and kinetics of the thermal unfolding of plastocyanin. Eur Biophys J. 1998;27(3):273–82.CrossRefGoogle Scholar
  35. 35.
    Kachalova GS, Bourenkov GP, Bartunik HD, Dimitrov MI, Donchev AA, Shosheva ACh. Crystal structure of poplar plastocyanin b. Acta Crystallogr. 2002;A58(Supplement):C303.Google Scholar
  36. 36.
    Sturtevant J. Biochemical applications of differential scanning calorimetry. Ann Rev Phys Chem. 1987;38:463–512.CrossRefGoogle Scholar
  37. 37.
    Jelesarov I, Bosshard HR. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit. 1999;12(1):3–18.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • V. I. Getov
    • 1
  • G. R. Toromanov
    • 1
  • G. K. Kostov
    • 1
  • M. I. Dimitrov
    • 1
  • A. Ch. Shosheva
    • 1
  1. 1.Bulgarian Academy of SciencesInstitute of BiophysicsSofiaBulgaria

Personalised recommendations