Skip to main content
Log in

Thermodynamic properties of rubidium niobium tungsten oxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work temperature dependence of heat capacity of rubidium niobium tungsten oxide has been measured first in the range from 7 to 395 K and then between 390 and 650 K, respectively, by precision adiabatic vacuum and dynamic calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity \( C_{\text{p}}^{\text{o}} (T), \) enthalpy \( H^{\text{o}} ({\rm T}) - H^{\text{o}} (0) \), entropy \( S^{\text{o}} (T) - S^{\text{o}} \left( 0 \right) \), and Gibbs function \( G^{{^{\text{o}} }} ({\rm T}) - H^{{^{\text{o}} }} (0) \), for the range from T→0 to 650 K. The high-temperature X-ray diffraction and the differential scanning calorimetry were used for the determination of temperature and decomposition products of RbNbWO6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yamamura H, Nishino H, Kakinuma K, Nomura K. Electrical conductivity anomaly around fluorite–pyrochlore phase boundary. Solid State Ionics. 2003;158:359–65.

    Article  CAS  Google Scholar 

  2. Chamberlain SL, Hess ST, Corruccini LR. Dipolar magnetic order in the pyrochlore structure. Phys Lett A. 2004;323:310–4.

    Article  CAS  Google Scholar 

  3. Hashizume T, Yokota A, Saiki A, Terayama K. Fabrication of potassium tantalate films by hydrothermal electrochemical method at low temperature. J Therm Anal Calorim. 2008;92:431–4.

    Article  CAS  Google Scholar 

  4. Yudintsev SV. Corrosion study of actinide waste forms with Garnet-type structure. Geol Ore Deposit. 2003;45:151–7.

    Google Scholar 

  5. Chernorukov N, Knyazev A, Kuznetsova N, Markin A, Smirnova N. Crystal structure and thermodynamic properties of cesium tantalum tungsten oxide. Thermochim Acta. 2008;470:47–51.

    Article  Google Scholar 

  6. Bydanov NN, Chernaya TS, Muradyan LA, Sarin VA, Rider EE, Yankovskii VK, et al. Neutron-diffraction refinement of atomic structures of crystals of RbNbWO6 and TlNbWO6. Kristallografiya. 1987;32:623–30.

    CAS  Google Scholar 

  7. Babel D, Pausewang C, Viebahn W. Die Struktur einiger fluoride, oxide und oxidfluoride AMe2X6, der RbNiCrF6 – Typ. Zeitschrift fuer Naturforschung, Teil B 1967;22:1219–20.

    CAS  Google Scholar 

  8. Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–7.

    Article  CAS  Google Scholar 

  9. Malyshev VM, Milner GA, Sorkin EL, Shibakin VF. Automatic low-temperature calorimeter. Pribory i Tekhnika Eksperimenta. 1985;6:195–7.

    Google Scholar 

  10. Yagfarov MSh. New method of measuring the heat capacity and heat effects. Zh Fiz Khimii. 1969;43:1620–5.

    CAS  Google Scholar 

  11. Kabo AG, Diky VV. Details of calibration of a scanning calorimeter of the triple heat bridge type. Thermochim Acta. 2000;347:79–84.

    Article  CAS  Google Scholar 

  12. Maczka M, Ko J-H, Wlosewicz D, Tomaszewski PE, Kojima S, Hanuza J, et al. Heat capacity and dielectric studies of ferroelectric superionic conductor RbNbWO6. Solid State Ionics. 2004;167:309–15.

    Article  CAS  Google Scholar 

  13. Lebedev BV. Application of precise calorimetry in study of polymers and polymerization processes. Thermochim Acta. 1997;297:143–9.

    Article  CAS  Google Scholar 

  14. Chase MW Jr. NIST-JANAF themochemical tables, 4th ed. J Phys Chem Ref Data Monogr. 1998;9:1951 (database http://webbook.nist.gov/chemistry/).

  15. Cox JD, Wagman DD, Medvedev VA. Codata key values for thermodynamics. New York; 1984 (database http://webbook.nist.gov/chemistry/).

Download references

Acknowledgments

The work was performed with the financial support of NNSU’s innovation educational program within the National project “Education”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Knyazev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knyazev, A., Mączka, M., Kuznetsova, N. et al. Thermodynamic properties of rubidium niobium tungsten oxide. J Therm Anal Calorim 98, 843–848 (2009). https://doi.org/10.1007/s10973-009-0112-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0112-6

Keywords

Navigation