Skip to main content
Log in

Thermal behavior of verapamil hydrochloride and its association with excipients

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal properties of verapamil hydrochloride (VRP) and its physical association as binary mixtures with some common excipients were evaluated. Thermogravimetry (TG) was used to determine the thermal mass loss, as well as to study the kinetics of VRP thermal decomposition, using the Flynn-Wall-Ozawa model. Based on their frequent use in pharmacy, five different excipients (microcrystalline cellulose, magnesium stearate, hydroxypropyl methylcellulose, polyvinylpyrrolidone and talc) were blended with VRP. Samples were prepared by mixing the analyte and excipients in a proportion of 1:1 (m/m). DSC curves for pure VRP presented an endothermic event at 143 ± 2 °C (ΔHmelt = 132 ± 4 J g−1), which corresponds to the melting (literature Tm = 143.7 °C, ΔHmelt = 130.6 J g−1). Comparisons among the observed results for each compound and their binary physical mixtures presented no relevant changes. This suggests no interaction between the drug and excipient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balestrieri F, Magri AD, Magri AL, Marini D, Sacchini A. Application of differential scanning calorimetry to the study of drug-excipient compatibility. Thermochim Acta. 1996;285:337–45.

    Article  CAS  Google Scholar 

  2. Cotton ML, Wu DW, Vadas EB. Drug excipient interaction study of enalapril maleate using thermal-analysis and scanning electron-microscopy. Int J Pharm. 1987;40:129–42.

    Article  CAS  Google Scholar 

  3. Li Wan Po A, Mroso PV. Drug–drug incompatibility in the solid state: kinetic interpretation, modelling and prediction. Int J Pharm. 1984;18:287–98.

    Article  CAS  Google Scholar 

  4. Mroso PV, Li Wan Po A, Irwin WJ. Solid-state stability of aspirin in the presence of excipients—kinetic interpretation, modeling, and prediction. J Pharm Sci. 1982;71:1096–101.

    Article  CAS  Google Scholar 

  5. Botha SA, Lotter AP. Compatibility study between atenolol and tablet excipients using differential scanning calorimetry. Drug Dev Ind Pharm. 1990;16:1945–54.

    Article  CAS  Google Scholar 

  6. Vantonder EC, Lotter AP, Botha SA. Compatibility study between doxylamine succinate with other drugs and excipients using differential scanning calorimetry. Drug Dev Ind Pharm. 1990;16:2125–33.

    Article  CAS  Google Scholar 

  7. Donauer N, Lönbenberg R. A mini review of scientific and pharmacopeial requirements for the disintegration test. Int J Pharm. 2007;345:2–8.

    Article  CAS  Google Scholar 

  8. Schomerus M, Spiegelhaider B, Stieren B, Eichelbaum M. Physiological disposition of verapamil in man. Cardiovasc Res. 1976;10:605–12.

    Article  CAS  Google Scholar 

  9. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17:149–66.

    Article  CAS  Google Scholar 

  10. Flynn JH, Wall LA. General treatment of thermogravimetry of polymers. J Res Natl Bur Stand A: Phys Chem. 1966;70:487–523.

    CAS  Google Scholar 

  11. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  12. Flynn JH, Wall LA. A quick direct method for determination of activation energy from thermogravimetric data. J Polym Sci B: Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  13. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  14. Rustichelli C, Gamberini MC, Ferioli V, Gamberini G. Properties of the racemic species of verapamil hydrochloride and gallopamil hydrochloride. Int J Pharm. 1999;178:111–20.

    Article  CAS  Google Scholar 

  15. Abbas D, Kaloustian J, Orneto C, Piccerelle P, Portugal H, Nicolay A. DSC and physico-chemical properties of a substituted pyridoquinoline and its interaction study with excipients. J Therm Anal Calorim. 2008;93:353–60.

    Article  CAS  Google Scholar 

  16. American standard test method for oxidation onset temperature of hydrocarbons by differential scanning calorimetry, vol. 14.02. PA: ASTM International E2009-08; 2008.

  17. Guinesi LS, Ribeiro CA, Crespi MS, Santos AF, Capela MV. Titanium(IV)–EDTA complex. J Therm Anal Calorim. 2006;85:301–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éder T. G. Cavalheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, R.S., Semaan, F.S., Riga, A.T. et al. Thermal behavior of verapamil hydrochloride and its association with excipients. J Therm Anal Calorim 97, 349–353 (2009). https://doi.org/10.1007/s10973-009-0072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0072-x

Keywords

Navigation