Journal of Thermal Analysis and Calorimetry

, Volume 96, Issue 3, pp 929–935 | Cite as

Studies on thermal transformation of Na–montmorillonite–glycine intercalation compounds

  • A. H. Khan
  • M. Nurnabi
  • P. Bala


Thermogravimetric (TG), differential thermal analysis (DTA) and thermal degradation kinetics, FTIR and X-ray diffraction (XRD) analysis of synthesized glycine–montmorillonite (Gly–MMT) and montmorillonite bound dipeptide (Gly–Gly–MMT) along with pure Na–MMT samples have been performed. TG analysis at the temperature range 25–250 °C showed a mass loss for pure Na–MMT, Gly–MMT and Gly–Gly–MMT of about 8.0%, 4.0% and 2.0%, respectively. DTA curves show the endothermic reaction at 136, 211 and 678 °C in pure Na–MMT whereas Gly–MMT shows the exothermic reaction at 322 and 404 °C and that of Gly–Gly–MMT at 371 °C. The activation energies of the first order thermal degradation reaction were found to be 1.64 and 9.78 kJ mol−1 for Gly–MMT and Gly–Gly–MMT, respectively. FTIR analyses indicate that the intercalated compounds decomposed at the temperature more than 250 °C in Gly–MMT and at 250 °C in Gly–Gly–MMT.


Activation energy DTA FTIR Glycine ethylester intercalation Montmorillonite TG 


  1. 1.
    Hofmann U, Endell K, Wilm D. The crystal structure and the swelling of montmorillonite. Z Kristallogr Kristallgeom. 1933;86:340–8.Google Scholar
  2. 2.
    MacEwan DMC. Montmorillonite minerals. In: Brown G, editor. The X-ray identification and crystal structure of clay minerals. London: Mineralogical Society; 1961. p. 142–207.Google Scholar
  3. 3.
    Huang T, Wang R, Shi L, Lu X. Montmorillonite K-10: an efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water. Cataly Communica. 2008;9:1143–7.CrossRefGoogle Scholar
  4. 4.
    Zhang ZH, Li TS, Jin TS, Li JT. Montmorillonite clays catalysis. Part 12. An efficient and practical procedure for synthesis of diacetals from 2,2-bis(hydroxymethyl)propane-1,3-diol with carbonyl compounds. J Chem Res. 1998;S10:640–1.Google Scholar
  5. 5.
    Lopez-Galindo A, Viseras C, Cerezo P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci. 2007;36:51–63.CrossRefGoogle Scholar
  6. 6.
    Sazarashi M, Ikeda Y, Seki R, Yoshikawa H. Adsorption of I ions on minerals for 129I waste management. J Nucl Sci Tech. 1994;31:620–2.CrossRefGoogle Scholar
  7. 7.
    Yano K, Usuki A, Okada A. Synthesis and properties of polyimide-clay hybrid films. J Polym Sci A Polym Chem. 1997;35:2289–94.CrossRefGoogle Scholar
  8. 8.
    Vaia RA, Giannelis EP. Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules. 1997;30:7990–9.CrossRefGoogle Scholar
  9. 9.
    Li P, Song G, Yin L, Wang L, Ma G. New toughened polypropylene/organophilic montmorillonite nanocomposites. J Appl Polym Sci. 2008;108:2116–21.CrossRefGoogle Scholar
  10. 10.
    Sun Y, Luo Y, Jia D. Preparation and properties of natural rubber nanocomposites with solid-state organomodified montmorillonite. J Appl Polym Sci. 2008;107:2786–92.CrossRefGoogle Scholar
  11. 11.
    Bala P, Samantaray BK, Srivastava SK, Nando GB. Organomodified montmorillonite as filler in natural and synthetic rubber. J Appl Polym Sci. 2004;92:3583–92.CrossRefGoogle Scholar
  12. 12.
    Araújo EM, Barbosa R, Morais CRS, Soledade LEB, Souza AG, Vieira MQ. Effects of organoclays on the thermal processing of pe/clay nanocomposites. J Therm Anal Cal. 2007;90:841–8.CrossRefGoogle Scholar
  13. 13.
    Araújo EM, Barbosa R, Oliveira AD, Morais CRS, de Mélo TJA, Souza AG. Thermal and mechanical properties of PE/organoclay nanocomposites. J Therm Anal Cal. 2007;87:811–4.CrossRefGoogle Scholar
  14. 14.
    Stankowski M, Kropidłowska A, Gazda M, Haponiuk JT. Properties of polyamide 6 and thermoplastic polyurethane blends containing modified montmorillonites. J Therm Anal Cal. 2008;94:817–23.CrossRefGoogle Scholar
  15. 15.
    Leszczynska A, Pielichowski K. Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Cal. 2008;93:677–87.CrossRefGoogle Scholar
  16. 16.
    Bradley WF, Grim RE. High temperature thermal effects of clay and related materials. Am Mineral. 1951;36:182–201.Google Scholar
  17. 17.
    Güler Ç, Sarier N. Kinetics of the thermal dehydration of acid-activated montmorillonite by the rising temperature technique. Thermochim Acta. 1990;159:29–33.CrossRefGoogle Scholar
  18. 18.
    Brown DR, Rhodes CN. A new technique for measuring surface acidity by ammonia adsorption. Thermochim Acta. 1997;294:33–7.CrossRefGoogle Scholar
  19. 19.
    Noyan H, Önal M, Sarikaya Y. The effect of heating on the surface area, porosity and surface acidity of a bentonite. Clays Clay Miner. 2006;54:375–81.CrossRefGoogle Scholar
  20. 20.
    Gao Z, Xie W, Hwu JM, Wells L, Pan W-P. The characterization of organic modified montmorillonite and its filled PMMA nanocomposite. J Therm Anal Cal. 2001;64:467–75.CrossRefGoogle Scholar
  21. 21.
    Bala P, Samantaray BK, Srivastava SK. Synthesis and characterization of Na-montmorillonite-alkylammonium intercalation compounds. Matter Res Bull. 2000;35:1717–24.CrossRefGoogle Scholar
  22. 22.
    Önal M, Sarikaya Y. Thermal analysis of some organoclays. J Therm Anal Cal. 2008;91:261–5.CrossRefGoogle Scholar
  23. 23.
    Yermiyahu Z, Lapides I, Yariv S. Synthesis and thermo-XRD-analysis of the organo-clay color pigment. J Therm Anal Cal. 2007;88:795–800.CrossRefGoogle Scholar
  24. 24.
    Yermiyahu Z, Kogan A, Lapides I, Pelly I, Yariv S. Thermal study of naphthylammonium- and naphthylazonaphthylammonium-montmorillonite XRD and DTA. J Therm Anal Cal. 2008;91:125–35.CrossRefGoogle Scholar
  25. 25.
    Zidelkheir B, Abdelgoad M. Effect of surfactant agent upon the structure of montmorillonite X-ray diffraction and thermal analysis. J Therm Anal Cal. 2008;94:181–7.CrossRefGoogle Scholar
  26. 26.
    Jóna E, Sapietová M, Šnircová S, Pajtášová M, Ondrušová D, Pavlίk V, et al. Characterization and thermal properties of Ni-exchanged montmorillonite with benzimidazole. J Therm Anal Cal. 2008;94:69–73.CrossRefGoogle Scholar
  27. 27.
    Yang D, Yuan P, Zhu JX, He H-P. Synthesis and characterization of antibacterial compounds using montmorillonite and chlorhexidine acetate. J Therm Anal Cal. 2007;89:847–52.CrossRefGoogle Scholar
  28. 28.
    Ovadyahu D, Lapides I, Yariv S. Thermal analysis of tributylammonium montmorillonite and laponite. J Therm Anal Cal. 2007;87:125–34.CrossRefGoogle Scholar
  29. 29.
    Laura RD, Cloos P. Adsorption of ethylenediamine (EDA) on montmorillonite saturated with different cations; III, Na-, K- and Li-montmorillonite; ion-exchange, protonation, co-ordination and hydrogen-bonding. Clays Clay Miner. 1975;23:61–9.CrossRefGoogle Scholar
  30. 30.
    Jordan JW. Organophilic bentonites. I. Swelling in organic liquids. J Phys Colloid Chem. 1949;53:294–306.CrossRefGoogle Scholar
  31. 31.
    Brindley GW, Hoffmann RW. Orientation and packing of aliphatic chain molecules on montmorillonite. Clays Clay Miner. 1962;9:546–56.CrossRefGoogle Scholar
  32. 32.
    Lagaly G, Weiss A. Arrangement and orientation of cationic surfactants on silicate surfaces. IV. Arrangement of n-alkylammonium ions on weakly charged layer silicates. Kolloid Z Z Polymere. 1971;243:48–55.CrossRefGoogle Scholar
  33. 33.
    Lagaly G. Characterization of clays by organic compounds. Clay Miner. 1981;16:1–21.CrossRefGoogle Scholar
  34. 34.
    Koster van Gross F, Guggenheim S. Dehydroxylation of Ca- and Mg-exchanged montmorillonite. Am Miner. 1989;74:627–36.Google Scholar
  35. 35.
    Bala P, Samantaray BK, Srivastava SK, Haeuseler H. Microstructural parameters and layer disorder accompanying dehydration transformation in Na-montmorillonite. Z Kristallogr. 2000;215:235–9.Google Scholar
  36. 36.
    Shuali U, Yariv S, Steinberg M, Muller-Vonmoos M, Kahr G, Rub A. Thermal analysis of pyridine-treated sepiolite and palygorskite. Clay Miner. 1991;26:497–506.CrossRefGoogle Scholar
  37. 37.
    Greene-Kelly R. The montmorillonite minerals. In: Mackenzie RC, editor. The differential thermal investigation of clays. London: Mineralogical Society; 1957. p. 139–64.Google Scholar
  38. 38.
    Yariv S, Mueller-Vonmoos M, Kahr G, Rub A. Thermal analytic study of the adsorption of crystal violet by laponite. J Therm Anal. 1989;35:1941–52.CrossRefGoogle Scholar
  39. 39.
    Yariv S. The role of charcoal on DTA curves of organo-clay compleses: an overview. Appl Clay Sci. 2004;24:225–36.CrossRefGoogle Scholar
  40. 40.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  41. 41.
    Akelah A, Kelly P, Qutubuddin S, Moet A. Synthesis and characterization of ‘epoxyphilic’ montmorillonites. Clay Miner. 1994;29:169–78.CrossRefGoogle Scholar
  42. 42.
    Farmer VC. The layer silicates. In: Farmer VC, editor. The infrared spectra of minerals. London: Mineralogical Society; 1974. p. 331–63.Google Scholar
  43. 43.
    Wang HY, Li YM, Xiao Y, Zhao YF. Investigation of spontaneous condensation of an amino acid based amphiphile on cast film by in situ transmission FT-IR spectroscopy. Chin Chem Lett. 2005;16:1637–40.Google Scholar
  44. 44.
    Krzaczkowska J, Fojud Z, Kozak M, Jurga S. Spectroscopic studies of poly(ε-Caprolactone)/sodium montmorillonite nanocomposites. Acta Phys Polon. 2005;108:187–96.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Department of Applied Chemistry and Chemical TechnologyUniversity of DhakaDhakaBangladesh
  2. 2.Department of PhysicsJagannath UniversityDhakaBangladesh

Personalised recommendations