Journal of Thermal Analysis and Calorimetry

, Volume 96, Issue 3, pp 883–890 | Cite as

Study on the pyrolysis of Moroccan oil shale with poly (ethylene terephthalate)

  • A. Aboulkas
  • K. El Harfi
  • A. El Bouadili
  • M. Nadifiyine
  • M. Benchanaa


Investigations into the pyrolytic behaviours of oil shale, poly (ethylene terephthalate) (PET) and their mixture have been conducted using a thermogravimetric analyzer. Experiments were carried out dynamically by increasing the temperature from 298 to 1273 K with heating rates of 2 to 100 K/min under a nitrogen atmosphere. Discrepancies between the experimental and calculated TG/DTG profiles were considered as a measurement of the extent of interactions occurring on co-pyrolysis. The maximum degradation temperature of each component in the mixture was higher than those the individual components; thus an increase in thermal stability was expected. The kinetic processing of thermogravimetric data was carried out using Flynn-Wall-Ozawa (FWO) method.


Kinetics Oil shale Poly (ethylene terephthalate) Pyrolysis 


  1. 1.
    Joo HK, Curtis CW. Catalytic coprocessing of LDPE with coal and petroleum resid using different catalysts. Fuel Process Technol. 1998;53:197–214.CrossRefGoogle Scholar
  2. 2.
    Taghiei MM, Feng Z, Huggins FE, Huffman GP. Coliquefaction of waste plastics with coal. Energy Fuels. 1994;8:1228–32.CrossRefGoogle Scholar
  3. 3.
    Nuttall HE, Guo TM, Schrader S, Thakur DS. Pyrolysis kinetics of several key world oil shales. ACS symposium series 230, American Chemical Society, Washington, DC, 1983. p. 269.Google Scholar
  4. 4.
    Alpern B. Les schistes bitumineux: constitution, reserves, valorisation. Bull Centre Rech Explor Prod Elf-Aquitaine. 1981;5:319–52.Google Scholar
  5. 5.
    Bekri O, Ziyad M. Synthesis of oil shale R & D activities in Morocco, Proceedings of the 1991 Eastern Oil Shale Symposium, Lexington, Kentucky; 1991.Google Scholar
  6. 6.
    Ambles A, Halim M, Jacquesy JC, Vitorovic D, Ziyad M. Characterization of kerogen from Timahdit shale (Y-layer) based on multistage alkaline permanganate degradation. Fuel. 1994; 73:17–24.CrossRefGoogle Scholar
  7. 7.
    Halim M, Joffre J, Ambles A. Characterization and classification of Tarfaya kerogen (South Morocco) based on its oxidation products. Chem. Geol. 1997;141:225–34.CrossRefGoogle Scholar
  8. 8.
    Aboulkas A, El Harfi K. Co-pyrolysis of olive residue with poly(vinyl chloride) using thermogravimetric analysis. J Thermal Anal Calorim.. 2009;95:1007–13.CrossRefGoogle Scholar
  9. 9.
    Aboulkas A, El Harfi K, Nadifiyine M, El Bouadili A. Thermogravimetric characteristics and kinetic of co-pyrolysis of olive residue with high density polyethylene. J Thermal Anal Calorim.. 2008;91:737–43.CrossRefGoogle Scholar
  10. 10.
    Kok MV. Recent developments in the application of thermal analysis techniques in fossil fuels. J Thermal Anal Calorim. 2008;91:763–73.CrossRefGoogle Scholar
  11. 11.
    Yamur S, Durusoy T. Kinetics of the pyrolysis and combustion of göynük oil shale. J Thermal Anal Calorim. 2006;86:479–82.CrossRefGoogle Scholar
  12. 12.
    Berkovich AJ, Young BR, Levy JH, Schmidt SJ, Ray A. Thermal characterization of Australian oil shales. J Thermal Anal Calorim. 1997;49:737–43.CrossRefGoogle Scholar
  13. 13.
    Kok MV, Iscan AG. Oil shale kinetics by differential methods. J Thermal Anal Calorim. 2007;88:657–61.CrossRefGoogle Scholar
  14. 14.
    Kok MV, Pamir R. Non-isothermal pyrolysis and kinetics of oil shales. J Thermal Anal Calorim. 1999;56:953–8.CrossRefGoogle Scholar
  15. 15.
    Kok MV, Pamir R. Comparative pyrolysis and combustion kinetics of oil shales. J Anal Appl Pyrol. 2000;55:185–94.CrossRefGoogle Scholar
  16. 16.
    Williams PT, Nasir A. Influence of process conditions on the pyrolysis of Pakistani oil shales. Fuel. 1999;78:653–62.CrossRefGoogle Scholar
  17. 17.
    Jaber JO, Probert SD. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions. Fuel Process Technol. 2000;63:57–70.CrossRefGoogle Scholar
  18. 18.
    Williams PT, Nasir A. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Appl Energy. 2000;66:113–33.CrossRefGoogle Scholar
  19. 19.
    Heikkinen J, Spliethoff H. Waste mixture composition by thermogravimetric analysis J Thermal Anal Calorim. 2003;72:1031–9.CrossRefGoogle Scholar
  20. 20.
    Jenekhe SA, Lin JW. Kinetics of the thermal degradation of polyethylene terephthalate. Thermochimica Acta. 1983;61:287–99.CrossRefGoogle Scholar
  21. 21.
    Martin-Gullon I, Esperanza M, Font R. Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate) (PET). J Anal Appl Pyrol. 2001;58–59:635–50.CrossRefGoogle Scholar
  22. 22.
    Saha B, Ghoshal AK. Model-free kinetics analysis of waste PE sample. Chem Eng J. 2005;111:39–43.CrossRefGoogle Scholar
  23. 23.
    Aboulkas A, El harfi K, Nadifiyine N, El bouadili A. Investigation on pyrolysis of Moroccan oil shale/plastic mixtures by thermogravimetric analysis. Fuel Process Technol. 2008;89:1000–6.CrossRefGoogle Scholar
  24. 24.
    Aboulkas A, El Harfi K, El Bouadili A, BenChanaa M, Mokhlisse A. Pyrolysis kinetics of polypropylene: Morocco oil shale and their mixtures. J Thermal Anal Calorim. 2007;89:203–9.CrossRefGoogle Scholar
  25. 25.
    Gersten J, Fainberg V, Hetsroni A, Shindler Y. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture. Fuel. 2000;79:1679–86.CrossRefGoogle Scholar
  26. 26.
    Degirmenci L, Durusoy T. Thermal degradation kinetics of Göynük oil shale with polystyrene. J Thermal Anal Calorim. 2005;79:663–8.CrossRefGoogle Scholar
  27. 27.
    Cai J, Wang Y, Zhou L, Huang Q. Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere. Fuel Process Technol. 2008;89:21–7.CrossRefGoogle Scholar
  28. 28.
    Vivero L, Barriocanal C, Alvarez R, Diez MA. Effects of plastic wastes on coal pyrolysis behaviour and the structure of semicokes. J Anal Appl Pyrol. 2005;74:327–36.CrossRefGoogle Scholar
  29. 29.
    Tissot BP, Welte DH. Petroleum formation and occurrence. Berlin: Springer; 1978. p. 142.Google Scholar
  30. 30.
    Durand B, Monin JC. Elemental analysis of kerogen. In: Durand, B. editor. Kerogen. Paris: Technip; 1980. p. 301.Google Scholar
  31. 31.
    Flynn J, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  32. 32.
    Ozawa T. A new method of analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  33. 33.
    Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.CrossRefGoogle Scholar
  34. 34.
    Torrente MC, Galan MA. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain). Fuel. 2001;80:327–34.CrossRefGoogle Scholar
  35. 35.
    Sonibare OO, Ehinola OA, Egashira R. Thermal and geochemical characterization of Lokpanta oil shales, Nigeria. Energy Convers Manag. 2005;46:2335–44.CrossRefGoogle Scholar
  36. 36.
    Dogan OM, Uysal BZ. Non-isothermal pyrolysis kinetics of three Turkish oil shales. Fuel. 1996;75:1424–8.CrossRefGoogle Scholar
  37. 37.
    Senneca O, Chirone R, Masi S, Salatino P. A thermogravimetric study of non-fossil solid fuels: I. Inert pyrolysis. Energy Fuels. 2002;16:653–60.CrossRefGoogle Scholar
  38. 38.
    Sharypov VI, Beregovtsova NG, Kuznetsov BN, Membrado L, Cebolla VL, Marin N. Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part III: Characterisation of heavy products. J Anal Appl Pyrol. 2003;67:325–40.CrossRefGoogle Scholar
  39. 39.
    Ishaq M, Ahmad I, Shakirullah M, Khan MA, Rehman H, Bahader A. Pyrolysis of some whole plastics and plastics-coal mixtures. Energy Convers Manag. 2006;47:3216–23.CrossRefGoogle Scholar
  40. 40.
    Bockhorn H, Hornung A, Hornung U, Schawaller D. Kinetic study on the thermal degradation of polypropylene and polyethylene. J Anal Appl Pyrol. 1999;48:93–109.CrossRefGoogle Scholar
  41. 41.
    Horvat N, Ng FTT. Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel. Fuel. 1999;78:459–70.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • A. Aboulkas
    • 1
    • 2
  • K. El Harfi
    • 1
    • 2
  • A. El Bouadili
    • 2
  • M. Nadifiyine
    • 1
  • M. Benchanaa
    • 1
  1. 1.Laboratoire de Recherche sur la Réactivités des Matériaux et l’Optimisation des Procédés «REMATOP», Département de chimie, Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMorocco
  2. 2.Laboratoire Interdisciplinaire de Recherche en Sciences et Techniques, Faculté polydisciplinaire de Béni-MellalUniversité Sultan Moulay SlimaneBeni-MellalMorocco

Personalised recommendations