Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 2, pp 523–530 | Cite as

Characterization and thermal analysis of thiourea and bismuth trichloride complex



A complex of thiourea and bismuth trichloride has been synthesized. Its composition is Bi3Cl9[SC(NH2)2]7. Crystallographic data are a = 7.141(2) Å, b = 8.820(3) Å, c = 16.365(5) Å, α = 99.389(4)°, β = 95.422(4)°, γ = 106.177(4)°, triclinic system. There are the mononuclear anion [BiCl5SC(NH2)2]2− and the dinuclear cation {Bi2Cl4[SC(NH2)2]6}2+ with the Bi–Cl–Bi bridge bonds in the complex. The electric conductance of the absolute methanol solution contained the complex indicates that the complex is an ionic compound. Raman spectra indicate that the bismuth ion is coordinated by the sulfur atoms of the thiourea. The thermal analysis verifies the structure of complex. The TG–MASS curves show the structure rearrangement in the complex at about 118 °C. The DSC curves and calculation means that the structure rearrangement is irreversible.


Ionic compounds Bismuth(III) chloride Thiourea Crystal structure Raman spectroscopy Thermal analysis TG–DTA–MS DSC 



The authors gratefully acknowledge the National Natural Science Foundation of China (20676038), the Key Project of Science and Technology for Ministry of Education (107045) and the Shanghai Leading Academic Discipline Project (Project Number: B502) for financial supports.


  1. 1.
    Lalia-Kantouri M, Manoussakis GE. Thermal Decomposition of Tris(N,N-Disubstituted Dithiocarbamate) Complexes of As(III), Sb(III) and Bi(III). J Therm Anal Cal. 1983;29:1151–69.Google Scholar
  2. 2.
    Lalia-Kantouri M, Christofides AG, Manoussakis GE. Thermal decomposition of tris(Piperidyldithiocarbamates) of As(Ill), Sb(lll) and Bi(lll). J Therm Anal Cal. 1984;29:279–95.CrossRefGoogle Scholar
  3. 3.
    Sharutin VV, Egorova IV, Sharutina OK, Ivanenko TK, Adonin NY, Starichenko VF, et al. Tetranuclear bismuth complex Bi-4(O)(2)(O2CC6H2F3-3,4,5,)(8) · 2 eta(6)-C6H5Me: synthesis and structure. Russ J Coord Chem. 2003;29:838–44.CrossRefGoogle Scholar
  4. 4.
    Cammi R, Lanfranchi M, Marchio L, Mora C, Paiola C, Pellinghelli M. Synthesis and molecular structure of the dihydrobis(thioxotriazolinyl)borato complexes of zinc(II), bismuth(III), and nickel(II). M ··· H-B interaction studied by ab initio calculations. Inorg Chem. A 2003;42:1769–78.CrossRefGoogle Scholar
  5. 5.
    Goforth AM, Smith MD, Peterson L, Loye HCZ. Preparation and characterization of novel inorganic-organic hybrid materials containing rare, mixed-halide anions of bismuth(III). Inorg Chem. 2004;43:7042–9.CrossRefGoogle Scholar
  6. 6.
    Balazs L, Breunig HJ, Lork E, Soran A, Silvestru AC. Isomers of a dibismuthane, R2Bi-BiR2 [R=2,6-(Me2NCH2)(2)C6H3], and unusual reactions with oxygen: formation of [R2Bi](2)(O-2) and R'R''Bi[R'=2-(Me2NCH2)-6-{Me2N(O)CH2}C6H3;R''=2-(Me2NCH2)-6-{O(O)C}C6H3]. Inorg Chem. 2006;45:2341–6.CrossRefGoogle Scholar
  7. 7.
    Turner LE, Davidson MG, Jones MD, Ott H, Schulz VS, Wilson PJ. Bis(bismuth) toluene inverted-sandwich complex supported by aminetris(phenoxide) ligands. Inorg Chem. 2006;45:6123–5.CrossRefGoogle Scholar
  8. 8.
    Goforth AM, Peterson L Jr, Smith MD, Loye HC. Syntheses and crystal structures of several novel alkylammonium iodobismuthate materials containing the 1,3-bis-(4-piperidinium)propane cation. J Solid State Chem. 2005;178:3529–40.CrossRefGoogle Scholar
  9. 9.
    Jameson GB, Blaszó E, Oswald HR. Nitratopentakis(thiourea)bismuth(III) nitrate monohydrate, [Bi(NO3){SC(NH2)2}5](NO3)2·H2O, and trinitratotris (thiourea) bismuth(III), [Bi(NO3)3{SC(NH2)2}3]. Acta Crystallogr Sect C. 1984;40:350–4.CrossRefGoogle Scholar
  10. 10.
    Bensch W, Blazsó E, Dubler E, Oswald HR. The structures of Bi2(CH3COO)6.3SC(NH2)2·H2O and Bi(CH3COO)3·3SC(NH2)2. Acta Crystallogr Sect C. 1987;43:1699–704.CrossRefGoogle Scholar
  11. 11.
    Battaglia LP, Corradi AB, Pelizzi G, Tani MEV. Cationic and anionic bismuth(III) in chloro-thiourea complexes: crystal structure of [Bi(tu)6][Bi{(tu)1.5Cl1.5}Cl3]2 (tu = thiourea). J Chem Soc Dalton Trans. 1977;1141.Google Scholar
  12. 12.
    Bhat SG, Dharmaprakash SM. New metal-organic crystal: bismuth thiourea chloride. Mater Res Bull. 1998;33:833–40.CrossRefGoogle Scholar
  13. 13.
    Williams DJ, Hutchings AM, McConnell NE, Faucher RA, Huck BE, Brevett CAS, et al. Main group metal halide complexes part XVIII: the synthesis, characterization, with sterically hindered thioureas and X-ray crystallographic study of a BiCl3 complex with 1-methyl-2(3H)-imidazolethione. Inorg Chim Acta. 2006;359:2252–5.CrossRefGoogle Scholar
  14. 14.
    Vaira MD, Mani F, Stoppioni P. Lead(II) and bismuth(III) complexes with macrocyclic ligands. Eur J Inorg Chem. 1999;5:833–7.Google Scholar
  15. 15.
    Golovnev NN, Novikova GV, Vershinin VV, Churilov TD, Golovneva II. Complex formation of bismuth(III) with L-cysteine. Russ J Inorg Chem. 2003;48:1696–9.Google Scholar
  16. 16.
    Thompson KH, Orvig C. Boon and bane of metal ions in medicine. Science. 2003;300:936–9.CrossRefGoogle Scholar
  17. 17.
    Miller WH, Schipper HM, Lee JS, Singer J, Waxman S. Mechanisms of action of arsenic trioxide. Cancer Res. 2002;62:3893–903.Google Scholar
  18. 18.
    Kopf-Maier P. Antitumor activity of some organometallic bismuth(III) thiolates. Inorg Chim Acta. 1988;152:49–52.CrossRefGoogle Scholar
  19. 19.
    Cantos G, Barbieri CL, Iacomini M, Gorin PAJ, Travassos LR. Synthesis of antimony complexes of yeast mannan and mannan derivatives and their effect on Leishman-infected macrophages. Biochem J. 1993;289:155–60.Google Scholar
  20. 20.
    Kaloustian J, Pauli AM, Pieroni G, Portugal H. The use of thermal analysis in determination of some urinary calculi of calcium oxalate. J Therm Anal Cal. 2002;70:959–73.CrossRefGoogle Scholar
  21. 21.
    Briand GG, Burford N. Bismuth compounds and preparations with biological or medicinal relevance. Chem Rev. 1999;99:2601–3657.CrossRefGoogle Scholar
  22. 22.
    Ge RG, Sun HZ. Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc Chem Res. 2007;40:267–74.CrossRefGoogle Scholar
  23. 23.
    Guo ZJ, Sadler PJ. Metals in medicine. Angew Chem Int Ed. 1999;38:1513–31.Google Scholar
  24. 24.
    Yu X, Zhang H, Cao Y, Chen Y, Wang Z. Synthesis and characteristics of a novel 3-D organic amine oxalate: (enH(2))(1.5)[Bi-3(C2O4)(6)(CO2CONHCH2CH2NH3) · 6.5H(2)O. J Solid State Chem. 2006;179:247–52.CrossRefGoogle Scholar
  25. 25.
    Feldmann C. Preparation and crystal structure of [Bi3I(C4H8O3H2)(2)(C4H8O3H)(5)](2)-Bi8I30 containing the novel polynuclear [Bi8I30](6-) anion. J Solid State Chem. 2003;172:53–8.CrossRefGoogle Scholar
  26. 26.
    Greenwood NN, Earnshaw A. Chemistry of the elements, chap. 7, 2nd ed. Oxford: Reed Educational and Professional Publishing Ltd; 1997. p. 553.Google Scholar
  27. 27.
    Jia RR, Yang YX, Chen YR, Jia YQ. Synthesis, crystal structure and thermal decomposition of solid complex. J Therm Anal Cal. 2004;76:157–63.CrossRefGoogle Scholar
  28. 28.
    Zhong GQ, Luan SR, Wang P, Guo YC, Chen YR, Jia YQ. Synthesis, characterization and thermal decomposition of thiourea complexes of antimony and bismuth triiodide. J Therm Anal Cal. 2006;86:775–81.CrossRefGoogle Scholar
  29. 29.
    Luan SR, Zhu YH, Jia YQ. Synthesis, characterization and thermal decomposition of alanine and taurine-salicylal schiff base complexes of magnesium. J Therm Anal Cal. 2009;95:951–6.CrossRefGoogle Scholar
  30. 30.
    Madarász J, Pokol G. Comparative evolved gas analyses on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments. J Therm Anal Cal. 2007;88:329–36.CrossRefGoogle Scholar
  31. 31.
    Yamaguchi A, Penland RP, Mizushima S, Lane TJ, Curran C, Quagliano JV. Infrared absorption spectra of inorganic coordination complexes. XIV. Infrared studies of some metal thiourea complexes1. J Am Chem Soc. 1957;80:527.CrossRefGoogle Scholar
  32. 32.
    Rivest R. Coordination complexes of titanium (IV) halides 111. Preparation and infrared spectra of the complexes of titanium, tetrachloride with urea, thiourea, and some of their derivatives. Can J Chem. 1962;40:2234–42.CrossRefGoogle Scholar
  33. 33.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, chap. 5–8, 5th ed. London: Wiley; 1978.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Research Center of Analysis and Test, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  3. 3.Department of Chemistry, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations