A model of nanofluids effective thermal conductivity based on dimensionless groups

  • A. R. Moghadassi
  • S. Masoud Hosseini
  • D. Henneke
  • A. Elkamel


Thermal conductivity is an important parameter in the field of nanofluid heat transfer. This article presents a novel model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions, particle size and interfacial shell properties. According to this model, thermal conductivity changes nonlinearly with nanoparticle loading. The results are in good agreement with the experimental data of alumina-water and alumina-ethylene glycol based nanofluids.


dimensionless group model nanofluid particle size thermal conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Lee, C. Sus, S. Li and J. A. Eastman, ASME J. Heat Transfer., 121 (1999) 280.CrossRefGoogle Scholar
  2. 2.
    X. Wang, X. Xu and C. Sus, J. Thermal Phys. Heat Transfer, 13 (1999) 474.CrossRefGoogle Scholar
  3. 3.
    Y. Xuan and Q. Li, Int. J. Heat Fluid Flow., 21 (2000) 58.CrossRefGoogle Scholar
  4. 4.
    J. A. Eastman, C. Sus, S. Li, W. Yu and L. Thomson, J. Appl. Phys. Lett., 78 (2001) 718.CrossRefGoogle Scholar
  5. 5.
    H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George and T. Pradeep, J. Appl. Phys. Lett., 83 (2003) 2931.CrossRefGoogle Scholar
  6. 6.
    S. K. Das, N. Putra, P. Thiesen and W. Roetzel, ASME J. Heat Transfer, 125 (2003) 567.CrossRefGoogle Scholar
  7. 7.
    C. Sus, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, J. Appl. Phys. Lett., 79 (2001) 2252.CrossRefGoogle Scholar
  8. 8.
    H. Xie, H. Lee, W. Youn and M. Choi, J. Appl. Phys., 94 (2003) 4967.CrossRefGoogle Scholar
  9. 9.
    S. M. S. Murshed, K. C. Leong and C. Yang, Int. J. Therm. Sci., 44 (2005) 367.CrossRefGoogle Scholar
  10. 10.
    J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd Ed., Oxford Univ. Press, Cambridge, UK 1904, p. 435.Google Scholar
  11. 11.
    R. L. Hamilton and O. K. Crosser, I & EC Fundamentals., 1 (1962) 187.CrossRefGoogle Scholar
  12. 12.
    D. J. Jeffrey, J. Math. Phys. Sci., 335 (1973) 355.Google Scholar
  13. 13.
    R. H. Davis, Int. J. Thermophys., 7 (1986) 609.CrossRefGoogle Scholar
  14. 14.
    P. Keblinski, S.R. Phillpot, C. Sus and J. A. Eastman, Int. J. Heat Mass Transfer, 45 (2002) 855.CrossRefGoogle Scholar
  15. 15.
    J. R. Henderson and F. Van Swol, Mol., Phys., 51 (1984) 991.CrossRefGoogle Scholar
  16. 16.
    N. F. H. Bellamine and A. Elkamel, J. Appl. Math. Comput., 182 (2006) 1021.CrossRefGoogle Scholar
  17. 17.
    B. Carnahan, H. A. Luther and J. O. Wilkes, J. Appl. Numerical Method, Wiley, New York 1990.Google Scholar
  18. 18.
    D.-W. Oh, A. Jain, J. K. Eaton, K. E. Goodson and J. S. Lee, Int. J. Heat Fluid Flow., 29 (2008) 1456.CrossRefGoogle Scholar
  19. 19.
    M. P. Beck, T. Sun and A. S. Teja, J. Fluid Phase Equilibr., 260 (2007) 275.CrossRefGoogle Scholar
  20. 20.
    Bin Shen Albert Shih, Minimum Quantity Lubrication (MQL) Grinding Using Nanofluids, the University of Michigan,
  21. 21.
    J. Koo and C. Kleinstreuer, Int. J. Heat Mass Transfer, 32 (2005) 1111.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • A. R. Moghadassi
    • 1
  • S. Masoud Hosseini
    • 1
  • D. Henneke
    • 2
  • A. Elkamel
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringArak UniversityArakIran
  2. 2.Department of Chemical Engineering University of WaterlooOntarioCanada

Personalised recommendations