Optimal synthesis of heat exchanger network for thermochemical S-I cycle

  • H. Liu
  • I. Kantor
  • A. Elkamel
  • M. Fowler


In this paper, a brief survey of hydrogen production methods is presented with a focus on S-I cycle. Based on heat duty data of sulfuric acid decomposition in S-I cycle, optimization models are developed to explore the minimum utility consumption and the minimum number of heat exchangers. Finally an optimal heat exchanger network for S-I thermochemical cycle is defined by a mixed integer optimization model.


hydrogen mixed integer optimization model S-I cycle sulfuric acid decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Energy Supply and Demand, Statistics Canada, Table 128-0009, Catalogue No: 57-003-x, 2007.Google Scholar
  2. 2.
    K. Tsunokawa and C. Hoban, Roads and Environment, A Handbook, The World Bank, Washington, D. G., 1997, p. 90.CrossRefGoogle Scholar
  3. 3.
    Inventory of U. S. Greenhouse Gas Emission and Sinks: 1990–2006 (EPA 430-R-08-005), U. S. Environmental Protection Agency, Washington, D.C., 2008, p. ES–15.Google Scholar
  4. 4.
    Fuel Cell Vehicle World Survey 2003, Breakthrough Technologies Institute, Washington, D.C., 2004, pp. 55, 57, 82.Google Scholar
  5. 5.
    A. Tugnoli, G. Landucci and V. Cozzani, Int. J. Hydrogen Energy, 33 (2008) 4352.Google Scholar
  6. 6.
    Y. Z. Chen, Y. Z. Wang, H. Y. Xu and G. X. Xiong, Appl. Catal. B: Env., 80 (2008) 283.CrossRefGoogle Scholar
  7. 7.
    J. Ivy, Summary of Electrolytic Hydrogen Production, Milestone Completion Report National Renewable Energy Laboratory, U.S. Department of Commence, Springfield VA, 2004, p. 8.Google Scholar
  8. 8.
    EN19 Efficiency of conventional thermal electricity production, European Environment Agency, 2007, p. 3.Google Scholar
  9. 9.
    J. S. Herring, J. E. O’Brien, C. M. Stoots, G. L. Hawkes, J. J. Hartvigsen and M. Shahnam, Int. J. Hydrogen Energy, 32 (2007) 441.Google Scholar
  10. 10.
    C. W. Forsberg, Int. J. Hydrogen Energy, 28 (2003) 1075.Google Scholar
  11. 11.
    S. Kasahara, S. Kubo, R. Hino, K. Onuki, M. Nomura and S. Nakao, Int. J. Hydrogen Energy, 32 (2007) 489.CrossRefGoogle Scholar
  12. 12.
    B. Yidiz and M. S. Kazimi, Int. J. Hydrogen Energy, 31 (2006) 83.Google Scholar
  13. 13.
    P. M. Mathias, General Atomics and Sandia National Laboratories Modeling the Sulfur-Iodine, Aspen Plus Building Blocks and Simulation Models, AspenTech, Rev. 2, 2002, p. 4.Google Scholar
  14. 14.
    K. Schultz, Thermochemical Production of Hydrogen from Solar and Nuclear Energy, General Atomics, San Diego, 2003, pp. 7, 30.Google Scholar
  15. 15.
    B. Belaissaoui, R. Thery, X. M. Meyer, M. Meyer, V. Gerbaud and X. Joulia, Chem. Eng. Process., 47 (2008) 397.Google Scholar
  16. 16.
    L. C. Brown, G. E. Besenbruch, R. D. Lentsh, K. R. Schultz, J. F. Funk, P. S. Pickard, A. C. Marshall, S. K. Showalter, High Efficiency Generation of Hydrogen Fuels Using Nuclear Power, General Atomics, 2003, pp. iii, 3–7, 3–13, 3-, 3–16.Google Scholar
  17. 17.
    R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz, Analysis Synthesis and Design of Chemical Processes, Second Edition, Prentice Hall PTR, New Jersey, 2007, pp. 464–477.Google Scholar
  18. 18.
    L. T. Biegler, I. E. Grossmann and A. W. Westerberg, Systematic Methods of Chemical Process Design, Prentice Hall PTR, New Jersey, 1997, pp. 527–566.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations