Advertisement

Thermal analysis/mass spectrometry using soft photo-ionisation for the investigation of biomass and mineral oils

  • T. Streibel
  • A. Fendt
  • R. Geißler
  • E. Kaisersberger
  • T. Denner
  • R. Zimmermann
Article

Abstract

The combined analytical methods of thermal analysis and mass spectrometry have been applied in form of a newly developed prototype of a thermogravimetry — single photon ionisation time-of-flight mass spectrometer coupling (TG-SPI-TOFMS) to investigate the molecular patterns of evolved gases from several biomass samples as well as a crude oil sample. Single photon ionization (SPI) was conducted by means of a novel electron beam pumped argon excimer lamp (EBEL) as photon source. With SPI-TOFMS various lignin decomposition products such as guaiacol, syringol and coniferyl alcohol could be monitored. Furthermore, SPI allows the detection of aliphatic hydrocarbons, mainly alkenes, carbonylic compounds such as acetone, and furan derivatives such as furfuryl alcohol and hydroxymethylfurfural. More alkaline biomass such as coarse colza meal show intense signals from nitrogen containing substances such as (iso-)propylamine and pyrrole. Thermal degradation of crude oil takes place in two steps, evaporation of volatile components and pyrolysis of larger molecular structures at higher temperatures. Due to the soft ionisation, homologue rows of alkanes and alkenes could be detected on basis of their molecular ions.

The obtained information from the thermal analysis/photo ionisation mass spectrometry experiments can be drawn on in comparison to the investigation of the primary products from flash pyrolysis of biomass for production of biofuels and chemicals.

Keywords

biomass crude oil mass spectrometry photo-ionisation thermal analysis 

References

  1. 1.
    J. Chiu, Anal. Chem., 40 (1968) 1516.CrossRefGoogle Scholar
  2. 2.
    K. G. H. Raemaekers and J. C. J. Bart, Thermochim. Acta, 295 (1997) 1.CrossRefGoogle Scholar
  3. 3.
    L. Cao, F. Mühlberger, T. Adam, T. Streibel, H. Z. Wang, A. Kettrup and R. Zimmermann, Anal. Chem., 75 (2003) 5639.CrossRefGoogle Scholar
  4. 4.
    T. Adam, T. Streibel, S. Mitschke, F. Mühlberger, R. R. Baker and R. Zimmermann, J. Anal. Appl. Pyrol., 74 (2005) 454.CrossRefGoogle Scholar
  5. 5.
    D. L. Zoller and V. J. Murray, Energy Fuels, 13 (1999) 1097.CrossRefGoogle Scholar
  6. 6.
    D. L. Bowman, C. J. Smith, B. R. Bombick, J. T. Avalos, R. A. Davis, W. T. Morgan and D. J. Doolittle, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 521 (2002) 137.CrossRefGoogle Scholar
  7. 7.
    F. Mühlberger, T. Streibel, J. Wieser, A. Ulrich and R. Zimmermann, Anal. Chem., 77 (2005) 7408.CrossRefGoogle Scholar
  8. 8.
    F. Mühlberger, J. Wieser, A. Morozov, A. Ulrich and R. Zimmermann, Anal. Chem., 77 (2005) 2218.CrossRefGoogle Scholar
  9. 9.
    M. Saraji-Bozorgzad, R. Geißler, T. Streibel, F. Mühlberger, M. Sklorz, E. Kaisersberger, T. Denner and R. Zimmermann, Anal. Chem., 80 (2008) 3393.CrossRefGoogle Scholar
  10. 10.
    J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle and W. L. Brown, Rev. Sci. Instr., 68 (1997) 1360.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • T. Streibel
    • 1
    • 2
  • A. Fendt
    • 2
    • 3
  • R. Geißler
    • 1
    • 2
  • E. Kaisersberger
    • 5
  • T. Denner
    • 5
  • R. Zimmermann
    • 1
    • 2
    • 4
  1. 1.Helmholtz Zentrum MünchenOberschleißheimGermany
  2. 2.Universität Rostock, Chair of Analytical ChemistryRostockGermany
  3. 3.University of Augsburg, Chair of Solid State ChemistryAugsburgGermany
  4. 4.bifa-Umweltinstitut GmbHAugsburgGermany
  5. 5.Netzsch-Gerätebau GmbHSelbGermany

Personalised recommendations