Pozzolanic reactivity of the supplementary cementitious material pitchstone fines by thermogravimetric analysis

  • K. Vessalas
  • P. S. Thomas
  • A. S. Ray
  • J. -P. Guerbois
  • P. Joyce
  • J. Haggman


Thermogravimetric (TG) analysis was applied to the characterisation of the pozzolanic reaction in mortars containing the supplementary cementitious materials (SCMs) pitchstone fines (PF) and fly ash (FA) as partial replacements for Portland cement (PC). TG analysis was used to determine the proportion of calcium hydroxide (CH) present from the hydration of the PC based on the dehydroxylation of the CH present in the blended PC-SCM mortars. The consumption of CH indicated that both SCMs underwent the pozzolanic reaction and that PF was found to compare favourably in its pozzolanic reactivity of FA, the industry and globally accepted standard artificial pozzolan.


fly ash pitchstone fines Portland cement pozzolanic reactivity thermogravimetric analysis 


  1. 1.
    W. Roszczynialski, J. Therm. Anal. Cal., 70 (2002) 387.CrossRefGoogle Scholar
  2. 2.
    J. I. Bhatty and K. J. Reid, Thermochim. Acta, 91 (1985) 95.CrossRefGoogle Scholar
  3. 3.
    A. Moropoulou, A. Bakolas and E. Aggelakopoulou, Thermochim. Acta, 420 (2004) 135.CrossRefGoogle Scholar
  4. 4.
    B. Uzal, L. Turanli and P. K. Mehta, ACI Mater. J., 104 (2007) 535.Google Scholar
  5. 5.
    S. K. Das and Yudhbir, Cem. Concr. Res., 36 (2006) 1827.CrossRefGoogle Scholar
  6. 6.
    R. J. Detwiler and P. K. Mehta, ACIMater. J., 86 (1989) 609.Google Scholar
  7. 7.
    C. Duran Atis and C. Bilim, Building Environ., 42 (2007) 3060.CrossRefGoogle Scholar
  8. 8.
    A. L. A. Fraay, J. M. Bijen and Y. M. de Haan, Cem. Concr. Res., 19 (1989) 235.CrossRefGoogle Scholar
  9. 9.
    M. O’Farrell, B. B. Sabir and S. Wild, Cem. Concr. Compos., 28 (2006) 790.CrossRefGoogle Scholar
  10. 10.
    L. H. Yu, H. Ou and L. L. Lee, Cem. Concr. Res., 33 (2003) 73.CrossRefGoogle Scholar
  11. 11.
    A. Ray, R. Sriravindrarajah, J. P. Guerbois, P. S. Thomas, S. Border, H. Ray, J. Haggman and P. Joyce, J. Therm. Anal. Cal., 88 (2007) 279.CrossRefGoogle Scholar
  12. 12.
    ASTM C 311-05, Standard test methods for sampling and testing fly ash or natural pozzolans for use in Portland-cement concrete. 2005, ASTM Int.Google Scholar
  13. 13.
    ASTM C 618-05, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, 2005, ASTM Int.Google Scholar
  14. 14.
    ASTM C 1240-05, Standard specification for silica fume used in cementitious mixtures. 2005, ASTM Int.Google Scholar
  15. 15.
    ASTM C 305-99, Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. 1999, ASTM International.Google Scholar
  16. 16.
    K. Hover and T. Stokes, Concr. Int., 17 (1995) 52.Google Scholar
  17. 17.
    ASTM C 109/C 109M-05, Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). 2005, ASTM Int.Google Scholar
  18. 18.
    ASTM C 511-05, Standard specification for mixing rooms, moist cabinets, moist rooms and water storage tanks used in the testing of hydraulic cements and concretes, 2005, ASTM Int.Google Scholar
  19. 19.
    K. Vessalas, A. S. Ray, P. S. Thomas, R. S. Ravindrarajah., P. Joyce, J. Haggman, P. A. Joyce and T. M. K. Vo, Cem. Concr. Res., in preparation.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • K. Vessalas
    • 1
  • P. S. Thomas
    • 1
  • A. S. Ray
    • 1
  • J. -P. Guerbois
    • 1
  • P. Joyce
    • 2
  • J. Haggman
    • 2
  1. 1.Centre for Built Infrastructure ResearchUniversity of Technology, SydneyBroadwayAustralia
  2. 2.Perlco Pty Ltd.North SydneyAustralia

Personalised recommendations