Advertisement

Titanium(IV) acetylacetonate xerogels for processing titania films

A thermoanalytical study
  • Ilona Oja Acik
  • J. Madarász
  • M. Krunks
  • K. Tõnsuaadu
  • G. Pokol
  • L. Niinistö
Article

Abstract

Thermal decomposition of dried crystalline powder obtained from titanium(IV) bis(acetylacetonate) diisopropoxide (75% solution in 2-propanol) (1) was monitored by simultaneous TG/DTA, EGA-FTIR and EGA-MS measurements and the results were compared with those of amorphous powder obtained by gelling of acetylacetonate-modified titanium(IV) tetra-isopropoxide at molar ratio of 1:2 in boiling 2-methoxyethanol (2). Thermal degradation of 1 in the temperature range of 25–700°C consists of 5 steps with a total mass loss of 62.5%. EGA by FTIR and MS revealed the release of H2O below 120°C; followed by an intensive evolution of acetylacetone around 245°C. The release of acetone and acetic acid occurs up to 270°C and that of CO and CO2 up to 530°C.

Keywords

EGA by FTIR and MS sol-gel titania processing Ti(IV)-acac xerogel 

References

  1. 1.
    M. Okuya, K. Shiozaki, N. Horikawa, T. Kosugi, G. R. A. Kumara, J. Madarász, S. Kaneko and G. Pokol, Solid State Ionics, 172 (2004) 527.CrossRefGoogle Scholar
  2. 2.
    I. Oja, A. Mere, M. Krunks, R. Nisumaa, C.-H. Solterbeck and M. Es-Souni, Thin Solid Films, 515 (2006) 674.CrossRefGoogle Scholar
  3. 3.
    M. Okuya, K. Nakade, D. Osa, T. Nakano, G. R. Asoka Kumara and S. Kaneko, J. Photochem. Photobiol. A: Chem., 164 (2004) 167.CrossRefGoogle Scholar
  4. 4.
    M. Krunks, A. Katerski, T. Dedova, I. Oja Acik and A. Mere, Sol. En. Mat. Sol. Cells, 92 (2008) 1016.CrossRefGoogle Scholar
  5. 5.
    M. Krunks, I. Oja, K. Tõnsuaadu, M. Es-Souni, M. Gruselle and L. Niinistö, J. Therm. Anal. Cal., 80 (2005) 483.CrossRefGoogle Scholar
  6. 6.
    I. Oja Acik, J. Madarász, M. Krunks, K. Tõnsuaadu, D. Janke, G. Pokol and L. Niinistö, J. Therm. Anal. Cal., 88 (2007) 557.CrossRefGoogle Scholar
  7. 7.
    J. Madarász, S. Kaneko, M. Okuya and G. Pokol, Thermochim. Acta, doi: 10.1016/j.tca.209.01.020.Google Scholar
  8. 8.
    R. Campostrini, M. Ischia and L. Palmisano, J. Therm. Anal. Cal., 71 (2003) 1011.CrossRefGoogle Scholar
  9. 9.
    NIST Chemistry Webbook Standard Reference Database No 69, June 2005 Release, http://webbook.nist.gov/chemistry/
  10. 10.
  11. 11.
    S. J. Rigby, A. H. R. Al-Obaidi, S.-K. Lee, D. McStay and P. K. J. Robertson, Appl. Surf. Sci., 252 (2006) 7948.CrossRefGoogle Scholar
  12. 12.
    P. D. Moran, A. Bowmaker, R. P. Cooney, K. S. Finnie, J. R. Bartlett and J. L. Woolfrey, Inorg. Chem., 37 (1998) 2741.CrossRefGoogle Scholar
  13. 13.
    V. Mohaček-Grošev, K. Furič and H. Ivankovič, J. Phys. Chem. A, 111 (2007) 5820.CrossRefGoogle Scholar
  14. 14.
    S. F. Tayyari and F. Milani-Nejad, Spectrochim. Acta A, 56 (2000) 2679.CrossRefGoogle Scholar
  15. 15.
    Titanium diisopropoxide bis (acetylacetonate) 75 mass% in isopropanol (325252, CAS Number 17927-72-9) Raman spectrum, http://www.sigmaaldrich.com/catalog/search/ProductDetail/ALDRICH/325252
  16. 16.
    J. C. Parker and R. W. Siegel, J. Mater. Res., 5 (1990) 1246.CrossRefGoogle Scholar
  17. 17.
    International Centre for Diffraction Data (ICDD), Powder Diffraction File PDF-2 Release 2007.Google Scholar
  18. 18.
    F. H. Allen, The Cambridge Structural Database, Acta Crystallogr., B58 (2002) 380.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Ilona Oja Acik
    • 1
  • J. Madarász
    • 2
  • M. Krunks
    • 1
  • K. Tõnsuaadu
    • 1
  • G. Pokol
    • 2
  • L. Niinistö
    • 3
  1. 1.Faculty of Chemistry and Materials TechnologyTallinn University of TechnologyTallinnEstonia
  2. 2.Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Laboratory of Inorganic and Analytical ChemistryHelsinki University of TechnologyEspooFinland

Personalised recommendations