Advertisement

Thermal analysis of some phytotherapeutic products irradiated with electron beam

  • Monica R. Nemtanu
  • Mirela Brasoveanu
  • Viorica Meltzer
  • Elena Pincu
  • C. Oproiu
Article

Abstract

The purpose of the present work deals with the evaluation of the electron beam irradiation effects on some natural products based on thermal analysis. Some natural products with therapeutic contributions (artichoke, sea buckthorn, common sage, stonebreaker and cloves) were irradiated with doses up to 9 kGy using accelerated electron beam. The thermal profiles lead to identify three phenomena: dehydration — volatilization, irreversible degradation — molecular reorganization and residue decomposition. The radio-induced degradations determine slight shifts of the temperatures where these phenomena occur. The energetic value of the studied products is affected by e-beam treatment depending on irradiation dose.

Keywords

adiabatic combustion calorimetry DSC irradiation medicinal plants 

References

  1. 1.
    A. M. Villar del Fresno and M. J. A. Martinez, Farm. Prof., 18 (2004) 58.Google Scholar
  2. 2.
    J. Fritsche, C. Beindorff, M. Dachtler, H. Zhang and J. G. Lammers, Eur. Food Res. Technol., 215 (2002) 149.CrossRefGoogle Scholar
  3. 3.
    A. Miceli and P. de Leo, Biores. Technol., 57 (1996) 301.CrossRefGoogle Scholar
  4. 4.
    A. Zeb, J. Biol. Sci., 4 (2004) 687.CrossRefGoogle Scholar
  5. 5.
    P. S. Negi, A. S. Chauhan, G. A. Sadia, Y. S. Rohinishree and R. S. Ramteke, Food Chem., 92 (2005) 119.CrossRefGoogle Scholar
  6. 6.
    A. Vernet, Phytotherapie, 3 (2006) 125.Google Scholar
  7. 7.
    J. Zhu and Y. Zhang, US Patent 2006263459 (2006).Google Scholar
  8. 8.
    S. Fellah, P. N. Diouf, M. Petrissans, D. Perrin, M. Romdhane and M. Abderrabba, J. Essent. Oil Res., 18 (2006) 553.Google Scholar
  9. 9.
    J. Hohman, Planta Med., 55 (1999) 576.CrossRefGoogle Scholar
  10. 10.
    O. Bandonlene, R. R. Venskutonls, D. Gruzdlene and M. Murkovlc, Eur. J. Lipid Sci. Technol., 104 (2002) 286.CrossRefGoogle Scholar
  11. 11.
    D. W. Unander, G. L. Webster and B. S. Blumberg, J. Ethnopharmacol., 45 (1995) 1.CrossRefGoogle Scholar
  12. 12.
    J. B. Calixto, A. R. Santos, F. V. Cechinel and R. A. Yunes, Med. Res. Rev., 18 (1998) 225.CrossRefGoogle Scholar
  13. 13.
    R. K. Dhiman and Y. K. Chawla, Dig. Dis. Sci., 50 (2005) 1807.CrossRefGoogle Scholar
  14. 14.
    C. M. Mdlolo, J. S. Shandu and O. A. Oyedeji, Afr. J. Biotechnol., 7 (2008) 639.Google Scholar
  15. 15.
    G. Bagalkotkar, S. R. Sagineedu, M. S. Saad and J. Stanslas, J. Pharm. Pharmacol., 58 (2006) 1559.CrossRefGoogle Scholar
  16. 16.
    A. Ozturk and H. Ozbek, Eur. J. Gen. Med., 2 (2005) 159.Google Scholar
  17. 17.
    R. Minea, M. R. Nemtanu, S. Manea and E. Mazilu, Instr. Method. Phys. Res. A, 580 (2007) 792.CrossRefGoogle Scholar
  18. 18.
    M. R. Nemtanu, I. S. Kikuchi, T. J. A. Pinto, E. Mazilu, S. Setnic, M. Bucur, O. G. Duliu, V. Meltzer and E. Pincu, Nucl. Instrum. Methods Phys. Res. B, 266 (2008) 2520.CrossRefGoogle Scholar
  19. 19.
    CODEX STAN 106 — 1983, Rev. 1 — 2003, Revised Codex for Irradiated Foods, 2003.Google Scholar
  20. 20.
    World Health Organization (WHO), High-Dose Irradiation: Wholesomeness of food irradiated with dose above 10 kGy: Report of a joint FAO/IAEA/WHO Study Group, Technical Report Series 890, Geneva, Switzerland 1999.Google Scholar
  21. 21.
    D. Mitra, S. Francis and L. Varshney, J. Therm. Anal. Cal., 78 (2004) 821.Google Scholar
  22. 22.
    C. G. Biliaderis, Food Chem., 10 (1983) 239.CrossRefGoogle Scholar
  23. 23.
    Y. Pomeranz and C. E. Meloan, Food Analysis, Theory and Practice, 3rd Ed., Aspen Publishers, Inc. Gaithersburg, Maryland 2000.Google Scholar
  24. 24.
    D. Fessas, M. Signorelli, A. Pagani, M. Mariotti, S. Iametti and A. Schiraldi, J. Therm. Anal. Cal., 91 (2008) 9.CrossRefGoogle Scholar
  25. 25.
    C. Giancola, J. Therm. Anal. Cal., 91 (2008) 79.CrossRefGoogle Scholar
  26. 26.
    C. Baraldi, L. M. Bodecchi, M. Cocchi, C. Durante, G. Ferrari, G. Foca, M. Grandi, A. Marchetti, L. Tassi and A. Ulrici, Food Chem., 104 (2007) 229.CrossRefGoogle Scholar
  27. 27.
    L. A. Collett and M. E. Brown, J. Therm. Anal. Cal., 51 (1998) 693.Google Scholar
  28. 28.
    U. R. Charrondiere, S. Chevassus-Agnes, S. Marroni and B. Burlingame, J. Food Composit. Anal., 17 (2004) 339.CrossRefGoogle Scholar
  29. 29.
    M. Wesolowski, P. Konieczynski and B. Ulewicz-Magulska, J. Therm. Anal. Cal., 66 (2001) 593.CrossRefGoogle Scholar
  30. 30.
    T. K. Doyle, J. D. R. Houghton, R. McDevitt, J. Davenport and G. C. Hays, J. Exp. Mar. Biol. Ecol., 343 (2007) 239.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Monica R. Nemtanu
    • 1
  • Mirela Brasoveanu
    • 1
  • Viorica Meltzer
    • 2
  • Elena Pincu
    • 2
  • C. Oproiu
    • 1
  1. 1.Electron Accelerator Lab. — National Institute for LaserPlasma and Radiation PhysicsBucharest-MagureleRomania
  2. 2.Department of Physical ChemistryFaculty of Chemistry — University of BucharestBucharestRomania

Personalised recommendations