Advertisement

Thermal behaviour and properties of Na2O-TiO2-P2O5 glasses

  • P. Mošner
  • K. Vosejpková
  • L. Koudelka
Article

Abstract

Differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) were used to study the thermal behaviour of (50-x)Na2O-xTiO2-50P2O5 and 45Na2O-yTiO2-(55-y)P2O5 glasses. The addition of TiO2 to the starting glasses (x=0 and y=5 mol% TiO2) resulted in a nonlinear increase of glass transition temperature and dilatation softening temperature, whereas the thermal expansion coefficient decreased. All prepared glasses crystallize under heating within the temperature range of 300–610°C. The contribution of the surface crystallization mechanism over the internal one increases with increasing TiO2 content. With increasing TiO2 content the temperature of maximum nucleation rate is also gradually shifted from a value close to the glass transition temperature towards the crystallization temperature. X-ray diffraction measurements showed that the major compounds formed by glass crystallization were NaPO3, TiP2O7 and NaTi2(PO4)3. The chemical durability of the glasses without titanium oxide is very poor, but with the replacement of Na2O or P2O5 by TiO2, it increases sharply.

Keywords

DSC glasses thermal expansion X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Navarro, M. Cinebra, J. Clément, S. Martínes, G. Avila and A. Planell, J. Am. Ceram. Soc., 86 (2003) 1345.CrossRefGoogle Scholar
  2. 2.
    V. Rajendran, A. V. Gayathri Devi, M. Azzoz and F. H. El-Batal, J. Non-Cryst. Solids, 353 (2007) 77.CrossRefGoogle Scholar
  3. 3.
    E. M. Vogel, S. G. Kosinski, D. M. Krol, J. L. Jackel, S. R. Fribert, M. K. Oliver and J. D. Powers, J. Non-Cryst. Solids, 107 (1989) 244.CrossRefGoogle Scholar
  4. 4.
    G. D. L. K. Jayasinghe, P. W. S. K. Bandaranayake, M. A. K. L. Dissanayake and R. P. Gunawardane, Solid State Ionics, 78 (1995) 199.CrossRefGoogle Scholar
  5. 5.
    L. Koudelka, P. Mošner, J. Pospíšíl, L. Montagne and G. Palavit, J. Solid State Chem., 178 (2005) 1837.CrossRefGoogle Scholar
  6. 6.
    J. Pospíšil, P. Mošer and L. Koudelka, J. Therm. Anal. Cal., 84 (2006) 479.CrossRefGoogle Scholar
  7. 7.
    K. Brow, D. R. Tallant, W. L. Warren, A. McIntyre and D. E. Day, Phys. Chem. Glasses, 38 (1997) 300.Google Scholar
  8. 8.
    S. Krimi, A. Eljazouli, L. Rabardil, M. Cousi, I. Mansouri and G. Le Flem, J. Solid State Chem., 102 (1993) 400.CrossRefGoogle Scholar
  9. 9.
    L. Montagne, G. Palavit, A. Shaim, M. Et-Tabirou, P. Hartmann and Ch. Jäger, J. Non-Cryst. Solids, 293–295 (2001) 719.CrossRefGoogle Scholar
  10. 10.
    A. Kishioka, M. Haba and M. Amagasa, Bull. Chem. Soc. Jpn., 47 (1974) 2493.CrossRefGoogle Scholar
  11. 11.
    C. S. Ray and D. E. Day, Thermochim. Acta, 280–281 (1996) 163.CrossRefGoogle Scholar
  12. 12.
    I. Avramov, E. D. Zanotto and M. O. Prado, J. Non-Cryst. Solids, 320 (2003) 9.CrossRefGoogle Scholar
  13. 13.
    C. S. Ray, X. Fang and D. E. Day, J. Am. Ceram. Soc., 83 (2000) 865.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of General and Inorganic Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations