Journal of Thermal Analysis and Calorimetry

, Volume 94, Issue 3, pp 641–648 | Cite as

Adsorption and porosity properties of pure and modified carbon nanotube surfaces

  • M. Błachnio
  • P. Staszczuk
  • G. Grodzicka


Modified carbon multiwall nanotubes were prepared via the oxidation process by means of 65% nitric acid or ferric nitrate dissolved with 65% nitric acid. Using special thermogravimetry and sorptometry methods physicochemical properties of pure and modified nanotube surfaces were investigated. A numerical and analytical procedure for the evaluation of total heterogeneous properties on the basis of liquid thermodesorption from the sample surfaces under the quasi-equilibrium conditions are presented. The calculations of the fractal dimensions of carbon nanotubes using the sorptometry and thermogravimetry data is presented.


carbon nanotube thermogravimetry sorptometry fractal dimensions total heterogeneity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Zhijie, W. Zhengyuan, L. Ji, W. Bingqing and W. Dehai, Carbon, 37 (1999) 903.CrossRefGoogle Scholar
  2. 2.
    Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou and G. Wang, Chem. Phys. Lett., 299 (1999) 97.CrossRefGoogle Scholar
  3. 3.
    L. Kin-tak, S. San-Qiang and Ch. Hui-ming, Compos. Sci. Technol., 63 (2003) 1162.Google Scholar
  4. 4.
    Y. Quan-Hong, H. Peng-Xiang, B. Shuo, W. Mao-Zhang and Ch. Hui-Ming, Chem. Phys. Lett., 345 (2001) 19.Google Scholar
  5. 5.
    S. Q. Feng, D. P. Yu, G. Hu, X. F. Zhang and Z. J. Zhang, J. Phys. Chem., 58 (1997) 1887.Google Scholar
  6. 6.
    Ch. Singh, M. S. P. Shaffer and A. H. Windle, Carbon, 41 (2003) 2359.CrossRefGoogle Scholar
  7. 7.
    P. Staszczuk, Handbook of Thermal Analysis and Calorimetry, (M. E. Brown and P. K. Gallagher, Eds), Volume 5: Recent Advances, Techniques and Applications, Chapter 10, pp. 343–392, Elsevier, Oxford, UK 2008.CrossRefGoogle Scholar
  8. 8.
    D. Ugarte, T. Stöckli, J. M. Bonard, A. Châtelain and W. A. de Heer, Appl. Phys. A: Mat. Sci. Proc., 67 (1998) 101.CrossRefGoogle Scholar
  9. 9.
    F. Paulik, Special Trends in Thermal Analysis, J. Wiley and Sons Ltd., Chichester, England 1995.Google Scholar
  10. 10.
    P. Staszczuk, D. Sternik and V.V. Kutarow, J. Therm. Anal. Cal., 69 (2002) 23.CrossRefGoogle Scholar
  11. 11.
    P. Staszczuk, V. V. Kutarow and M. Płanda, J. Therm. Anal. Cal., 71 (2003) 445.CrossRefGoogle Scholar
  12. 12.
    P. Staszczuk, J. C. Bazan, M. Błachnio, D. Sternik and N. J. Garcia, J. Therm. Anal. Cal., 86 (2006) 61.Google Scholar
  13. 13.
    B. M. Kats and V. V. Kutarov, Langmuir, 12 (1996) 2762.CrossRefGoogle Scholar
  14. 14.
    P. Pfeifer, Fractals in Physics, Amsterdam, Holland, 1986.Google Scholar
  15. 15.
    P. Staszczuk, J. Therm. Anal. Cal., 79 (2005) 545.CrossRefGoogle Scholar
  16. 16.
    P. Staszczuk, M. Błachnio, E. Kowalska and D. Sternik, J. Therm. Anal. Cal., 86 (2006) 51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Physicochemistry of Solid SurfaceChemistry Faculty, Maria Curie-Sklodowska UniversityLublinPoland

Personalised recommendations