Advertisement

Non-isothermal crystallization of K2O·TiO2·3GeO2 glass

  • V. D. Živanović
  • S. R. Grujić
  • M. B. Tošić
  • N. S. Blagojević
  • J. D. Nikolić
Article

Abstract

The crystallization of K2O·TiO2·3GeO2 glass under non-isothermal condition was studied. In powdered glass with particle sizes less than 0.15 mm, surface crystallization was dominant and an activation energy of crystal growth of E a,s=327±50 kJ mol−1 was calculated. In the size range 0.15 to 0.45 mm, both surface and volume crystallization occurred. For particle sizes >0.45 mm, volume crystallization dominated with spherulitic morphology of the crystals growth and E a,v=359±64 kJ mol−1 was calculated.

Keywords

crystallization glass kinetics K2TiGe3O9 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Grujić, N. Blagojević, M. Tošić and V. Živanović, Ceram. Silik., 49 (2005) 270.Google Scholar
  2. 2.
    S. Grujić, N. Blagojević, M. Tošić, V. Živanović and B. Božović, J. Therm. Anal. Cal., 83 (2006) 463.CrossRefGoogle Scholar
  3. 3.
    T. Fukushima, Y. Benino, T. Fujiwara, V. Dimitrov and T. Komatsu, J. Solid State Chem. 179 (2006) 3949.CrossRefGoogle Scholar
  4. 4.
    L. Stoch and P. Stoch, J. Therm. Anal. Cal., 88 (2007) 577.CrossRefGoogle Scholar
  5. 5.
    S. R. Grujić, Ph.D. Thesis, Belgrade University, 2007.Google Scholar
  6. 6.
    S. R. Grujić, N. S. Blagojević, M. B. Tošić, V. D. Živanović and J. D. Nikolić, 39th International October Conference on Mining and Metallurgy-IOCMM 2007, October 07–10, 2007, Sokobanja, Serbia Proceedings, p. 241.Google Scholar
  7. 7.
    JCPDS 27-0394.Google Scholar
  8. 8.
    K. F. Kelton, K. Lakshmi Narayan, L. E. Levin, T. C. Cull and C. S. Ray, J. Non-Cryst. Solids, 204 (1996) 13.CrossRefGoogle Scholar
  9. 9.
    C. S. Ray, D. E. Day, W. Haung, K. Lakshmi Narayan, T. C. Cull and K. F. Kelton, J. Non-Cryst. Solids, 204 (1996) 1.CrossRefGoogle Scholar
  10. 10.
    C. S. Ray, Q. Yang, W. Haung and D. E. Day, J. Am. Ceram. Soc., 79 (1996) 3155.CrossRefGoogle Scholar
  11. 11.
    A. Maroti, A. Buri and F. Branda, J. Mater. Sci., 16 (1981) 341.CrossRefGoogle Scholar
  12. 12.
    J. A. Augis and J. E. Bennett, J. Thermal Anal., 13 (1978) 283.CrossRefGoogle Scholar
  13. 13.
    M. C. Weiberg, J. Non-Cryst. Solids, 127 (1991) 151.CrossRefGoogle Scholar
  14. 14.
    K. F. Kelton, J. Non-Cryst. Solids, 163 (1993) 283.CrossRefGoogle Scholar
  15. 15.
    N. Mehta and A. Kumar, J. Therm. Anal. Cal., 83 (2006) 401.CrossRefGoogle Scholar
  16. 16.
    N. Mehta and A. Kumar, J. Therm. Anal. Cal., 87 (2007) 343.CrossRefGoogle Scholar
  17. 17.
    J. Šesták, Phys. Chem. Glass, 15 (1974) 137.Google Scholar
  18. 18.
    K. Matusita and S. Sakka, Phys. Chem. Glass, 20 (1979) 81.Google Scholar
  19. 19.
    K. Matusita and S. Sakka, J. Non-Cryst. Solids, 34 (1980) 741.CrossRefGoogle Scholar
  20. 20.
    H. E. Kissinger, Anal. Chem., 29 (1959) 1072.Google Scholar
  21. 21.
    T. Ozawa, Bull. Chem. Soc. Jpn., 35 (1956) 1881.Google Scholar
  22. 22.
    K. F. Kelton, Mater. Sci. Eng. A, 226–228 (1997) 142.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • V. D. Živanović
    • 1
  • S. R. Grujić
    • 2
  • M. B. Tošić
    • 1
  • N. S. Blagojević
    • 2
  • J. D. Nikolić
    • 1
  1. 1.Institute for the Technology of Nuclear and other Mineral Raw MaterialsBelgradeSerbia
  2. 2.Faculty of Technology and MetallurgyBelgradeSerbia

Personalised recommendations