Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 3, pp 829–832 | Cite as

Investigation of synthesis and microstructure of bismuth titanates with TiO2 rich compositions

  • Teresa Zaremba
Article

Abstract

Preliminary examinations regarding formation of bismuth titanates in a part of Bi2O3—TiO2 system rich with TiO2 have been carried out. Bismuth titanates have been synthesized from mixtures of Bi2O3 and TiO2 (anatase) by the conventional solid-state method at the temperatures ranged from 1273 to 1473 K. Differential thermal analysis (DTA), powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to study the formation of bismuth titanates. The following compounds have been achieved: Bi4Ti3O12, Bi2Ti2O7 and Bi2Ti4O11. Existence of controversial bismuth titanate of formula Bi2Ti3O9 in the Bi2O3—TiO2 system has not been confirmed.

Keywords

bismuth titanates DTA microstructure SEM synthesis XRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. I. Speranskaya, I. S. Rez, L. V. Kozlova, V. M. Skorikov and V. I. Slavov, Izv. Akad. Nauk SSSR, Neorg. Mater., 1 (1965) 232.Google Scholar
  2. 2.
    A.M. Sych and Ju. A. Titov, Ukr. Khim. Zh., 9 (1976) 906.Google Scholar
  3. 3.
    J. S. Patwardhan and M. N. Rahaman, J. Mater. Sci., 39 (2004) 133.CrossRefGoogle Scholar
  4. 4.
    T. M. Bruton, J. Solid State Chem., 9 (1974) 173.CrossRefGoogle Scholar
  5. 5.
    E. M. Levin and R. S. Roth, J. Res. Nat. Bur. Stand. Sect. A, 68 (1964) 197.Google Scholar
  6. 6.
    A. D. Morrison, Ferroelectrics, 2 (1971) 59.Google Scholar
  7. 7.
    I. N. Belyaev, N. P. Smolyaninov and N. P. Kalnizkij, Zh. Neorg. Khim., 8 (1963) 384.Google Scholar
  8. 8.
    G. I. Skanavi, A. M. Kashtanova and N. N. Kurzeva, Izv. Akad. Nauk SSSR Ser. Phys., 24 (1960) 114.Google Scholar
  9. 9.
    S. P. Yordanov, Ch. P. Carapanov, I. S. Ivanov and P. T. Cholakov, Ferroelectrics, 209 (1998) 541.CrossRefGoogle Scholar
  10. 10.
    E. Aleshin and R. Roy, J. Am. Ceram. Soc., 45 (1962) 18.CrossRefGoogle Scholar
  11. 11.
    E. C. Subbarao, J. Am. Ceram. Soc., 45 (1962) 564.CrossRefGoogle Scholar
  12. 12.
    Z. B. Xiao, X. M. Wu, H. Wang, Z. Wang, S. X. Shan and M. Wang, Mater. Lett., 51 (2001) 240.CrossRefGoogle Scholar
  13. 13.
    M. Yamaguchi, T. Nagamoto and Y. Masuda, Jpn. J. Appl. Phys., 40 (2001) 5559.CrossRefGoogle Scholar
  14. 14.
    L. B. Kong, J. Ma, W. Zhu and O. K. Tan, Mater. Lett., 51 (2001) 108.CrossRefGoogle Scholar
  15. 15.
    M. Tanaka, T. Higuchi, K. Kudoh and T. Tsukamoto, Jpn. J. Appl. Phys., 41 (2002) 1536.CrossRefGoogle Scholar
  16. 16.
    S. Y. Lee and B. O. Park, J. Cryst. Growth, 283 (2005) 81.CrossRefGoogle Scholar
  17. 17.
    Z. Mesikova, P. Sulcova and M. Trojan, J. Therm. Anal. Cal., 84 (2006) 733.CrossRefGoogle Scholar
  18. 18.
    P. Sulcova and M. Trojan, J. Therm. Anal. Cal., 84 (2006) 737.CrossRefGoogle Scholar
  19. 19.
    J. W. Medernach and R. L. Snyder, J. Am. Ceram. Soc., 61 (1978) 494.CrossRefGoogle Scholar
  20. 20.
    Y. Inoue, T. Kimura and T. Yamaguchi, Am. Ceram. Soc. Bull., 62 (1983) 704.Google Scholar
  21. 21.
    M. Villegas, C. Moure, J. F. Fernandez and P. Duran, Ceram. Intern., 22 (1996) 15.CrossRefGoogle Scholar
  22. 22.
    M. Villegas, A. C. Caballero, C. Moure, P. Duran and J. F. Fernandez, J. Am. Ceram. Soc., 82 (1999) 2411.Google Scholar
  23. 23.
    M. Krunks, I. Oja, K. Tonsuaadu, M. Es-Souni, M. Gruselle and L. Niinistö, J. Therm. Anal. Cal., 80 (2005) 483.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Chemistry and Inorganic TechnologySilesian University of TechnologyGliwicePoland

Personalised recommendations