Journal of Thermal Analysis and Calorimetry

, Volume 95, Issue 2, pp 495–499 | Cite as

Effect of berberine alkaloids on Bifidobacterium adolescentis growth by microcalorimetry

  • D. Yan
  • Y. M. Han
  • L. Wei
  • X. H. Xiao


The inhibitory effects of three berberine alkaloids (BAs) from Coptis chinensis Franch on Bifidobacterium adolescentis growth were investigated by microcalorimetry. The growth rate constant (k) and maximum heat-output power (Pmax) decreased and peak time of maximum heat-output power (tp) prolonged with the increase of BAs concentration. Half inhibitory ratios (IC50) BAs were respectively 790.3 (berberine), 339.6 (coptisine) and 229.8 μL−1 (palmatine), which indicated the sequence of their antimicrobial activity: berberine<coptisine<palmatine. Combined with previous findings, the sequence which could show the bioactivity of Bacillus shigae and Escherichia coli was: berberine>coptisine>palmatine. The structure-function relationship of BAs indicated that the functional group methylenedioxy or methoxyl at C2 and C3 might be the major group inducing the activities of BAs on E. coli and B. adolescentis. Meanwhile, the substituent groups at C2, C3, C9 and C10 almost had equal effect on B. shigae.


Bacillus shigae berberine alkaloid Bifidobacterium adolescentis Escherichia coli inhibitory effect intestinal flora microcalorimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    China Pharmacopoeia Committee, Pharmacopoeia of the People’s Republic of China (1st Div., 2005 ed.), Beijing 2005, p. 213.Google Scholar
  2. 2.
    D. M. Ding, Pharmacodynamic Action and Clinic of Chinese Medicinal Materials, Beijing 1999, p. 154.Google Scholar
  3. 3.
    H. X. Guo, Foundation and Application of Probiotics, Beijing 2002, p. 3.Google Scholar
  4. 4.
    R. Roškar, M. Vivoda and V. Kmetec, J. Therm. Anal. Cal., 92 (2008) 791.CrossRefGoogle Scholar
  5. 5.
    X. S. Shen, Y. Liu, C. P. Zhou and R. M. Zhao, Acta Chim. Sinica, 58 (2000) 1463.Google Scholar
  6. 6.
    L. N. Yang, F. Xu, L. X. Sun, Z. B. Zhao and C. G. Song, J. Therm. Anal. Cal., 93 (2008) 417.CrossRefGoogle Scholar
  7. 7.
    L. Ruan, Y. Wang, L. Wai and Y. Hoi-Fu, J. Therm. Anal. Cal., 89 (2007) 953.CrossRefGoogle Scholar
  8. 8.
    Y. W. Wu, W. Y. Gao, X. H. Xiao and Y. Liu, Thermochim. Acta, 429 (2005) 167.CrossRefGoogle Scholar
  9. 9.
    X. Li, C. Wang, J. Li and Z. Wang, J. Therm. Anal. Cal., 89 (2007) 899.CrossRefGoogle Scholar
  10. 10.
    X. J. Chen, W. S. Feng, W. Miao, Y. H. Yu, Y. F. Shen, C. Y. Wan and J. H. Peng, J. Therm. Anal. Cal., 94 (2008) 779.CrossRefGoogle Scholar
  11. 11.
    Y. Liu, C. N. Yan, T. Z. Wang and R. M Zhao, Thermochim. Acta, 333 (1999) 103.CrossRefGoogle Scholar
  12. 12.
    A. M. Tan, Y. Q. Huang and S. S. Qu, J. Biochem. Biophys. Methods, 37 (1998) 91.CrossRefGoogle Scholar
  13. 13.
    R. N. Alnoncourt, B. Graf, X. Xia and M. Muhler, J. Therm. Anal. Cal., 91 (2008) 173.CrossRefGoogle Scholar
  14. 14.
    M. L. Antonelli and R. F. Tornelli, J. Therm. Anal. Cal., 91 (2008) 113.CrossRefGoogle Scholar
  15. 15.
    L. N. Yang, F. Xu, L. X. Sun and Z. B. Zhao, J. Therm. Anal. Cal., 93 (2008) 583.CrossRefGoogle Scholar
  16. 16.
    D. Yan, C. Jin, X. H. Xiao and X. P. Dong, Sci. China Ser. B-Chem., 50 (2007) 638.CrossRefGoogle Scholar
  17. 17.
    D. Yan, C. Jin, X. H. Xiao and X. P. Dong, J. Biochem. Biophys. Methods, 70 (2008) 845.CrossRefGoogle Scholar
  18. 18.
    X. Li, Y. Liu, J. Wu, H. G Liang and S. S. Qu, Thermochim. Acta, 387 (2002) 57.CrossRefGoogle Scholar
  19. 19.
    X. Y. Su, PhD Thesis, Dalian Institute Chem. Phys., Chin. Acad. Sci., China (2006) Dalian.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.302 Hospital of People’s Liberation ArmyInstitute of Chinese MedicineBeijingP.R. China
  2. 2.Chongqing Institute of TechnologyChongqingP.R. China

Personalised recommendations