Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 95, Issue 2, pp 427–431 | Cite as

Non-isothermal kinetics of free-radical polymerization of 2,2-dinitro-1-butyl acrylate

  • S. H. Du
  • G. Z. Zhang
  • H. H. Li
  • P. Wang
  • X. C. Wang
Article

Abstract

The free-radical bulk polymerization of 2,2-dinitro-1-butyl-acrylate (DNBA) in the presence of 2,2′-azobisisobutyronitrile (AIBN) as the initiator was investigated by DSC in the non-isothermal mode. Kissinger and Ozawa methods were applied to determine the activation energy (E a) and the reaction order of free-radical polymerization. The results showed that the temperature of exothermic polymerization peaks increased with increasing the heating rate. The reaction order of non-isothermal polymerization of DNBA in the presence of AIBN is approximately 1. The average activation energy (92.91±1.88 kJ mol −1) obtained was smaller slightly than the value of E a=96.82 kJ mol−1 found with the Barrett method.

Keywords

2,2-dinitro-1-butyl acrylate DSC free-radical polymerization kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. L. Friedman, J. Polym. Sci., C6 (1965) 183.Google Scholar
  2. 2.
    T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.CrossRefGoogle Scholar
  3. 3.
    J. H. Flynn and L. A. Wall, J. Polym. Sci., B4 (1966) 323.Google Scholar
  4. 4.
    G. Z. Zhang, C. Q. Liu and H. Yoshida, J. Therm. Anal. Cal., 85 (2006) 707.CrossRefGoogle Scholar
  5. 5.
    J. L.Martin, A. Cadenato and J. M. Salla, Thermochim. Acta, 306 (1997) 115.CrossRefGoogle Scholar
  6. 6.
    R. D. Radičević, D. M. Stoiljković and J. K. Budinski-Simendić, J. Therm. Anal. Cal., 90 (2007) 243.CrossRefGoogle Scholar
  7. 7.
    S. G. Cho and K. D. Lee, Insensitive Munitions and Energetic Materials Technology Symposium, (2001) 163.Google Scholar
  8. 8.
    K. Takahashi, S. Abe and K. Namba, J. Appl. Polym. Sci., 12 (1968) 1683.CrossRefGoogle Scholar
  9. 9.
    K. Lee, J. Kim and B. Lee, J. Appl. Polym. Sci., 81 (2001) 2929.CrossRefGoogle Scholar
  10. 10.
    H. E Kissinger, Anal. Chem., 29 (1957) 1702.CrossRefGoogle Scholar
  11. 11.
    T. Ozawa, J. Thermal Anal., 2 (1970) 301.CrossRefGoogle Scholar
  12. 12.
    M. G. Scott and P. Ramachardrarao, Mater. Sci. Eng., 29 (1977) 137.CrossRefGoogle Scholar
  13. 13.
    K. E. J. Barreett, J. Appl. Polym. Sci., 11 (1976) 1617.CrossRefGoogle Scholar
  14. 14.
    G. O. R. Alberda van Ekenstein and Y. Y. Tan, Eur. Polym. J., 17 (1981) 839.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • S. H. Du
    • 1
  • G. Z. Zhang
    • 1
  • H. H. Li
    • 1
  • P. Wang
    • 1
  • X. C. Wang
    • 2
  1. 1.School of Chemical Engineering and the EnvironmentBeijing Institute of TechnologyBeijingChina
  2. 2.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations