Thermal hazard evaluation of carbon nanotubes with sulfuric acid by DSC

  • C. -W. Chang
  • Y. -C. Chou
  • J. -M. Tseng
  • M. -Y. Liu
  • C. -M. Shu
Regular Papers Organics/Polymers


Many concerns over unsafe or unknown properties of multi-walled carbon nanotubes (MWNTs) have been raised. The thermal characteristics regarding stability would represent potential hazards during the production or utilization stage and could be determined by calorimetric tests for various thermokinetic parameters. Differential scanning calorimetry (DSC) was employed to evaluate the thermokinetic parameters for MWNTs at various compositions.

Thermoanalytical curves showed that the average heat of decomposition (ΔH d) of the MWNTs samples in a manufacturing process was about 31,723 J g−1, by identifying them as an inherently hazardous material. In this study, significant thermal analysis appeared in the presence of sulfuric acid (H2SO4). From the DSC experiments, the purification process of MWNTs could induce an unexpected reaction in the condition of batch addition with reactants of H2SO4. The results can be applied for designing emergency relief system and emergency rescue strategies during a perturbed situation or accident.


DSC heat of decomposition multi-walled carbon nanotubes (MWNTs) sulfuric acid (H2SO4thermokinetic parameters 


  1. 1.
    S. Iijima, Nature, 354 (1991) 56.CrossRefGoogle Scholar
  2. 2.
    K. A. Dean, T. P. Burgin and B. R. Chalamala, Appl. Phys. Lett., 79 (2001) 121.CrossRefGoogle Scholar
  3. 3.
    H. Yu, C. Yu, T. Xi, L. Luo, J. Ning and C. Xiang, J. Therm. Anal. Cal., 82 (2005) 97.CrossRefGoogle Scholar
  4. 4.
    T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko and J. Douglas, Polymer, 45 (2004) 4227.CrossRefGoogle Scholar
  5. 5.
    M. S. Dresselhaus, G. Dresselhaus and R. Satio, Carbon, 33 (1995) 883.CrossRefGoogle Scholar
  6. 6.
    T. W. Ebbesen, Annu. Rev. Mater. Sci., 24 (1994) 235.CrossRefGoogle Scholar
  7. 7.
    W. A. de Heer, Science, 270 (1995) 1179.CrossRefGoogle Scholar
  8. 8.
    D. K. Pritchard, Literature Review-Explosion Hazards Associated with Nanopowders, HSL/2004/12,, 2004.Google Scholar
  9. 9.
    J. Jin, M. Song and F. Pan, Thermochim. Acta, 2007, DOI:10. 1016/j. tca. 02. 003.Google Scholar
  10. 10.
    S. Chervin and G. T. Bodman, Process Saf. Prog., 16 (1997) 94.CrossRefGoogle Scholar
  11. 11.
    Y. W. Wang, C. M. Shu, Y. S. Duh and C. S. Kao, Ind. Eng. Chem. Res., 40 (2001) 1125.CrossRefGoogle Scholar
  12. 12.
    C. M. Shu and Y. J. Yang, Thermochim. Acta, 392 (2002) 257.Google Scholar
  13. 13.
    M. K. Seo, J. R. Lee and S. J. Park, Mater. Sci. Eng., A, 404 (2005) 79.CrossRefGoogle Scholar
  14. 14.
    Mettler Toledo, STARe Thermal Analysis, Sweden 2005.Google Scholar
  15. 15.
    W. Jang, Chemistry Department, Drexel University.Google Scholar
  16. 16.
    Mettler Toledo Company, TA8000 Operation Instructions, Switzerland 2003.Google Scholar
  17. 17.
    Y. S. Duh, C. S. Kao, C. Lee, C. C. Hsu and S. W. Yu, The 2nd International Conference and Exhibition on Loss Prevention in the Oil, Chemical and Process Industries, Singapore 1995.Google Scholar
  18. 18.
    Y. S. Duh, C. S. Kao, C. Lee, M. L. Chen and S. W. Yu, International Symposium on Runaway Reactions and Pressure Relief Design, 237, Boston, MA, USA 1995.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • C. -W. Chang
    • 1
  • Y. -C. Chou
    • 1
  • J. -M. Tseng
    • 2
  • M. -Y. Liu
    • 3
  • C. -M. Shu
    • 1
  1. 1.Department of Safety, Health and Environmental EngineeringNational Yunlin University of Science and Technology (NYUST)Douliou, Yunlin, TaiwanROC
  2. 2.Doctoral ProgramGraduate School of Engineering Science and Technology, NYUSTDouliou, Yunlin, TaiwanROC
  3. 3.Chienkuo Technology UniversityChanghua, TaiwanROC

Personalised recommendations