Journal of Thermal Analysis and Calorimetry

, Volume 95, Issue 2, pp 633–638 | Cite as

Thermal analysis study of the effect of coal-burning additives on the combustion of coals

Regular Papers Organics/Polymers


Thermal analysis is widely used in combustion research for both fundamental and practical investigations. Efficient combustion of coals in cement industry is very important and necessary. In this research, the effects of three coal-burning additives on burning behaviour of bituminous coal and anthracite were studied with the help of thermogravimetry (TG) and differential scanning calorimetric (DSC) analysis. The kinetic study was carried out and the results were presented. The results showed that the coal-burning additives especially LSZ can reduce the ignition temperature, increase the ignition index D i, combustion ending index D f and affect the activation energy of the coal samples studied. The coal-burning additives especially LSZ can improve coal combustion effectiveness.


coal-burning additives DSC TG thermal analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. E. Ozbas, M. V. Kök and C. Hicyilmaz, J. Therm. Anal. Cal., 71 (2003) 849.CrossRefGoogle Scholar
  2. 2.
    M. V. Kök and C. Keskin, J. Therm. Anal. Cal., 649 (2001) 1265.CrossRefGoogle Scholar
  3. 3.
    L. Wachowski and M. Hofman, J. Therm. Anal. Cal., 2 (2006) 379.CrossRefGoogle Scholar
  4. 4.
    X. Li, G. Matuschek, M. Herrera, H. Wang and A. Kettrup, J. Therm. Anal. Cal., 719 (2003) 601.CrossRefGoogle Scholar
  5. 5.
    A. G. M. Vasandani and M. Raza Shah, J. Therm. Anal. Cal., 41 (1994) 1053.CrossRefGoogle Scholar
  6. 6.
    S. Kizgut, K. Baris and S. Yilmaz, J. Therm. Anal. Cal., 2 (2006) 483.CrossRefGoogle Scholar
  7. 7.
    N. Qihong and S. Shaozeng, J. Combust. Sci. Technol., 1 (2001) 72.Google Scholar
  8. 8.
    L. Liang, L. Lu-ping, Z. Jie-ming, Y. Hong-jie and B. Xiang-yan, J. Chang Sha University of Science and Technology (Natural Science), 4 (2005) 44.Google Scholar
  9. 9.
    L. Yanhua, C. Defu and L. Yintan, J. XI’AN Jiaotong University, 9 (2000) 21.Google Scholar
  10. 10.
    L. Li, Z.-C. Tan, S.-H. Meng, S.-D. Wang and D.-Y. Wu, J. Therm. Anal. Cal., 62 (2000) 681.CrossRefGoogle Scholar
  11. 11.
    X. Junlin, W. Guiming and Y. Hong, Bull. Chin. Ceram. Soc., 2 (2002) 58.Google Scholar
  12. 12.
    W. Shudong and W. Diyong, J. Fuel Chem. Technol., 3 (1998) 248.Google Scholar
  13. 13.
    X. Jun-lin, H. Feng and Y. Run-zhang, J. Wuhan University Technol.-Mater. Sci., 1 (2002) 72.CrossRefGoogle Scholar
  14. 14.
    H. Sis, J. Therm. Anal. Cal., 3 (2007) 864.Google Scholar
  15. 15.
    B. Arias, C. Pevida, F. Rubiera and J. J. Pis, J. Therm. Anal. Cal., 3 (2007) 860.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringWuhan University of TechnologyWuhanThe People’s Republic of China

Personalised recommendations