Calcined sludge sintering evaluation by heating microscopy thermal analysis

  • J. Dweck
  • L. C. Morais
  • M. V. A. Fonseca
  • V. Campos
  • P. M. Büchler
Regular Papers Environmental


Aiming the use of the sewage sludge produced in one of the largest Brazilian wastewater treatment stations as a raw material for the ceramic industry, the sintering process of the ashes produced from its calcination was evaluated by heating microscopy thermal analysis (HMTA). From the microprocessed images, a method was developed to obtain HMTA dimensional change curves as a function of temperature, equivalent to those usually obtained from dilatometers or by thermomechanical analysis (TMA). The final product after sintering at 1050°C, characterized by X-ray fluorescence spectrometry, scanning electron microscopy and X-ray dispersive energy, indicates the presence of a vitreous phase containing phosphorus, which explains the good sintering properties of the studied calcined sludge, as shown from its HMTA dimensional change curve.


heating microscopy SEM sludge X-ray dispersive energy 


  1. 1.
    F. Fernandes, Environmental Impact of Sewage Sludge in its Agricultural Use, W. Bettiol and O. A. Camargo, Eds, EMBRAPA Ed, São Paulo 2000, p. 45 (in Portuguese).Google Scholar
  2. 2.
    B. Wiebusch and C. F. Seyfried, Water Sci.Technol., 36 (1997) 251.CrossRefGoogle Scholar
  3. 3.
    N. Okuno and S. Takahashi, Water Sci. Technol., 36 (1998) 243.CrossRefGoogle Scholar
  4. 4.
    T. Onaka, Water Sci. Technol., 41 (2000) 93.Google Scholar
  5. 5.
    J. H. Tay and K. Y. Show, J. Env. Eng., 117 (1991) 236.CrossRefGoogle Scholar
  6. 6.
    M. Otero, C. Díez, M. E. Sanchez, A. I. Garcia and A. Morán, J. Therm. Anal. Cal., 86 (2006) 489.CrossRefGoogle Scholar
  7. 7.
    I. Pitkänen, J. Huttunen, H. Halttuen and R. Vesterinen, J. Therm. Anal. Cal. 56 (1999) 1253.CrossRefGoogle Scholar
  8. 8.
    L. C. Morais, J. Dweck, E. M. Gonçalves and P. M. Büchler, Mater. Sci. Forum, 560 (2006) 734.CrossRefGoogle Scholar
  9. 9.
    L. C. Morais, J. Dweck, F. R. Valenzuela Dìaz, E. M. Gonçalves and P. M. Büchler, Inter. J. Env. Studies, 63 (2006) 331.CrossRefGoogle Scholar
  10. 10.
    J. Dweck, L. C. Morais, J. C. Menezes and P. M. Büchler, Mater. Sci. Forum, 530–531 (2006) 740.CrossRefGoogle Scholar
  11. 11.
    D. Choudhury, R. C. Borah, R. L. Goswamee, H. P. Sharmah and P. G. Rao, J. Therm. Anal. Cal., 89 (2007) 965.CrossRefGoogle Scholar
  12. 12.
    M. Ischia, C. Perazzolli, R. Dal Maschio and R. Campostrini, J. Therm. Anal. Cal., 87 (2007) 567.CrossRefGoogle Scholar
  13. 13.
    L. F. Calvo, M. E. Sanchez, A. Moran and A. I. Garcia, J. Therm. Anal. Cal., 78 (2004) 867.CrossRefGoogle Scholar
  14. 14.
    M. H. Al Sayed, A. Mahman and M. Buali, Constr. Build. Mater., 9 (1995) 19.CrossRefGoogle Scholar
  15. 15.
    C. R. Cheeseman and G. S. Virdi, Resour. Conserv. Recycl., 45 (2005) 18.CrossRefGoogle Scholar
  16. 16.
    P. J. Wainwright and D. J. F. Cresswell, Waste Manag., 21 (2001) 241.CrossRefGoogle Scholar
  17. 17.
    J. L Bhatty and K. J. Reid, ACI Mater. J., 86 (1989) 394.Google Scholar
  18. 18.
    J. L. Bhatty and K. J. Reid, Waste Manag. Res., 7 (1989) 363.Google Scholar
  19. 19.
    J. Monzó, J. Payá, B. V. Borrachero and E. Peris-Mora, Cem. Concr. Res., 29 (1999) 87.CrossRefGoogle Scholar
  20. 20.
    A. Danch, J. Therm. Anal. Cal., 84 (2006) 663.CrossRefGoogle Scholar
  21. 21.
    H. Anmin, L. Ming and M. Dali, J. Therm. Anal. Cal., 84 (2006) 497.CrossRefGoogle Scholar
  22. 22.
    J. I. Frankel, W. D. Porter and A. Sabau, J. Therm. Anal. Cal., 82 (2005) 171.CrossRefGoogle Scholar
  23. 23.
    M. Goswami, A. Sarkar, B. I. Sharma, V. K. Shrikhande and G. P. Kothiyal, J. Therm. Anal. Cal., 78 (2004) 699.Google Scholar
  24. 24.
    K. Nitsch, A. Cihlar, D. Klimm, M. Nikl and M. Rodova, J. Therm. Anal. Cal., 80 (2005) 735.CrossRefGoogle Scholar
  25. 25.
    R. Ozao, H. Yoshida and T. Inada, J. Therm. Anal. Cal., 69 (2002) 925.CrossRefGoogle Scholar
  26. 26.
    I. Waclawska, M. Sroda and L. Stoch, J. Therm. Anal. Cal., 65 (2001) 661.CrossRefGoogle Scholar
  27. 27.
    Y. M. Chiang, D. P. Birnie and W. D. Kingery, Physical Ceramics, John Wiley and Sons Inc., New York 1997, p. 425.Google Scholar
  28. 28.
    Engineered Materials Handbook — Vol. 4, Ceramics and Glasses, Samuel, J. Shneider (Techn. Chairm.) ASM International Handbook Committee, (1991), p. 7.Google Scholar
  29. 29.
    S. J. G. Sousa and J. N. F. Holanda, J. Therm. Anal. Cal., 87 (2007) 423.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • J. Dweck
    • 1
  • L. C. Morais
    • 2
  • M. V. A. Fonseca
    • 3
  • V. Campos
    • 2
  • P. M. Büchler
    • 2
  1. 1.Chemical SchoolFederal University of Rio de JaneiroCidade Universitária, Rio de JaneiroBrazil
  2. 2.Department of Chemical Engineering-Polytechnic School-USPCidade UniversitáriaSão PauloBrazil
  3. 3.Pólo Xisto Química, Chemistry InstituteFederal University of Rio de JaneiroCidade Universitária, Rio de JaneiroBrazil

Personalised recommendations