Journal of Thermal Analysis and Calorimetry

, Volume 94, Issue 2, pp 373–377 | Cite as

Effect of reagents mixing on the thermal behavior of sol-gel precursors for silica-based nanocomposite thin films

  • Viorica Muşat
  • P. Budrugeac
  • C. Gheorghieş


The paper presents, based on TG-DTG-DSC data, some results of the thermal decomposition of some complex sol-gel precursors used for the deposition of mesoporous ZnO/SiO2 nanocomposite thin films for gas sensing applications. The effect chemical composition of the sol and reagents mixing during the sol preparation is discussed. The chemical nature of ZnO source (zinc acetate solid salt, zinc acetate alcoholic solution or ZnO nanopowder) used for the sol preparation significantly affects the thermal decomposition of complex precursor and the microstructure and properties of the nanocomposite thin films.


sol-gel TG-DTG-DSC thermal decomposition ZnO:SiO2 nanocomposite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. R. Ding, S. W. Li and H. Z. Wang, Appl. Phys. Lett., 90 (2007) 241918.CrossRefGoogle Scholar
  2. 2.
    S. Bandyopadhyay, G. K. Paul and S. K. Sen, Sol. Energy Mater. Sol. Cells, 71 (2002) 103.CrossRefGoogle Scholar
  3. 3.
    W. Shen, Y. Zhao and C. Zhang, Thin Solid Films, 483 (2005) 382.CrossRefGoogle Scholar
  4. 4.
    B. J. So, Noris, J. Anderson, J. F. Wager and D. A. Keszler, J. Phys. D: Appl. Phys., 36 (2003) L105.CrossRefGoogle Scholar
  5. 5.
    S. Chakrabarti, D. Ganguli and S. Chaudhuri, Phys. Status Solidi, 201 (2004) 2134.CrossRefGoogle Scholar
  6. 6.
    W. C. Chen, Mater. Lett., 59 (2005) 1239.CrossRefGoogle Scholar
  7. 7.
    M. Zaharescu, M. Crisan, L. Predoana, M. Gartner, D. Cristea and S. Degeratu, E. Manea, J. Sol-Gel Sci. Technol., 32 (2004) 17.CrossRefGoogle Scholar
  8. 8.
    Z. Qi, I. Honma and H. Zhou, Anal. Chem., 78 (2006) 1034.CrossRefGoogle Scholar
  9. 9.
    M. Crişan, I. Gartner, L. Predoana, R. Scurtu and M. Zaharescu, J. Sol-Gel Sci. Technol., 32 (2004) 167.CrossRefGoogle Scholar
  10. 10.
    A. Jitianu, Y. Altindag, M. Zaharescu and M. Wark, J. Sol-Gel Sci. Technol., 269 (2003) 483.CrossRefGoogle Scholar
  11. 11.
    P. Inocenzi, A. Martucci, M. Guglielmi, A. Bearzotti, E. Traversa and J. C. Pivin, J. Eur. Ceram. Soc., 21 (2001) 1985.CrossRefGoogle Scholar
  12. 12.
    U. Schubert, J. Mater. Chem., 15 (2005) 3701.CrossRefGoogle Scholar
  13. 13.
    I. Dekany, J. Therm. Anal. Cal., 79 (2005) 595.CrossRefGoogle Scholar
  14. 14.
    M. Stoia, C. Caizer, M. Stefanescu, P. Barvinschi and I. J. Julean, J. Therm. Anal. Cal., 88 (2007) 193.CrossRefGoogle Scholar
  15. 15.
    V. Musat, R. C. C. Monteiro and R. Martins, Rev. Roum. Chim., 48 (2003) 967.Google Scholar
  16. 16.
    V. Musat, P. Budrugeac, R. C. C. Monteiro and E. Fortunato, J. Therm. Anal. Cal., 89 (2007) 505.CrossRefGoogle Scholar
  17. 17.
    L. Hiltunen, M. Leskela, M. Makela and L. Niinistö, Acta Chem. Scand., A41 (1987) 548.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Metals and Materials Science’Dunărea de Jos’ University of GalatiGalatiRomania
  2. 2.INCDIE-ICPE-CA — National Institute for Research and Development in Electrical Engineering030138Romania
  3. 3.Department of Science’Dunărea de Jos’ University of GalatiGalatiRomania

Personalised recommendations