Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 2, pp 535–539 | Cite as

Selecting polymers for medical devices based on thermal analytical methods

  • H. Sobhi
  • M. Ellen Matthews
  • B. Grandy
  • J. Masnovi
  • A. T. Riga
Article

Abstract

This biomaterials overview for selecting polymers for medical devices focuses on polymer materials, properties and performance. An improved understanding of thermoplastics and thermoset properties is accomplished by thermal analysis for device applications. The medical applications and requirements as well as the oxidative and mechanical stability of currently used polymers in devices are discussed. The tools used to aid the ranking of the thermoplastics and thermosets are differential scanning calorimetry (DSC), thermogravimetry (TG), thermal mechanical analysis (TMA) and dynamic mechanical analysis (DMA) as well as a number of key ASTM polymer tests. This paper will spotlight the thermal and mechanical characterization of the bio-compatible polymers e.g., olefins, nylon, polyacetals, polyvinyl chloride and polyesters.

Keywords

DMA DSC nylon OIT OOT PET polyacetal polyamide polycarbonate polyester polyether ether ketone polyethylenes polyglycolide polyketal polylactide polymethyl methacrylate polyurethane polyvinyl chloride prosthetic devices PTFE silicones polypropylene TG TMA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.W. Billmeyer, Jr., Textbook of Polymer Science, 3rd Edition, J. Wiley, New York 1984.Google Scholar
  2. 2.
    H. Morawetz, Macromolecules in Solution, 2nd Ed., Wiley-Interscience, NY 1975.Google Scholar
  3. 3.
    L.H. Sperling, Introduction to Polymer Science, Wiley, NY 1992.Google Scholar
  4. 4.
    B.D. Ratner, A. Hoffman, F. Schoen and J. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Academic Press, San Diego 1996.Google Scholar
  5. 5.
    E. Chiellinini, Ed., Biomedical Polymers and Polymer Therapeutics, Academic/Plenum Publishers, NY, 2001.Google Scholar
  6. 6.
    M. Chanda and S. Roy, Eds., Plastics Technology Handbook, 47, 3rd Ed., (2006) 171–214.Google Scholar
  7. 7.
    R. Chartoff, ’Thermoplastic Polymers’, in Thermal Characterization of Polymeric Materials, E. Turi, Ed., 2nd Ed, 1, (1997) 518–523.Google Scholar
  8. 8.
    A. Hale and H. Bair, Polymer Blends and Block Copolymers, in Thermal Characterization of Polymeric Materials, E. Turi, Ed., 2nd Ed, 1, (1997) 745–870.Google Scholar
  9. 9.
    V. Reitz, Engineering Success with Implantable Polymers, Medical Design Magazine, 2006.42Google Scholar
  10. 10.
    A. Riga, D. Young, G. Mlachak and P. Kovach, J Thermal Anal., 49 (1997) 425.CrossRefGoogle Scholar
  11. 11.
    D. K. Dash, S. K. Sahu and P. L. Nayak, J. Therm. Anal. Cal., 86 (2006) 517.CrossRefGoogle Scholar
  12. 12.
    J. D. Menczel and M. Jaffe, J. Therm. Anal. Cal., 89 (2007) 357.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • H. Sobhi
    • 1
  • M. Ellen Matthews
    • 1
  • B. Grandy
    • 1
  • J. Masnovi
    • 1
  • A. T. Riga
    • 1
  1. 1.Department of ChemistryCleveland State UniversityClevelandUSA

Personalised recommendations