Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 94, Issue 2, pp 507–510 | Cite as

Studies on thermochemical properties of ionic liquids based on transition metal

  • W. Guan
  • L. Li
  • H. Wang
  • J. Tong
  • J. -Z. Yang
Article

Abstract

A brown and transparent ionic liquid (IL), [C4mim][FeCl4], was prepared by mixing anhydrous FeCl3 with 1-butyl-3-methylimidazolium chloride ([C4mim][Cl]), with molar ratio 1/1 under stirring in a glove box filled with dry argon. The molar enthalpies of solution, Δs H m, of [C4mim][FeCl4], in water with various molalities were determined by a solution-reaction isoperibol calorimeter at 298.15 K. Considering the hydrolyzation of anion [FeCl4] in dissolution process of the IL, a new method of determining the standard molar enthalpy of solution, Δs H m 0 , was put forward on the bases of Pitzer solution theory of mixed electrolytes. The values of Δs H m 0 and the sum of Pitzer parameters: \( (4\beta _{Fe,Cl}^{(0)L} + 4\beta _{C_4 mim,Cl}^{(0)L} + \Phi _{Fe,C_4 mim}^L ) \) and \( (\beta _{Fe,Cl}^{(1)L} + \beta _{C_4 mim,Cl}^{(1)L} ) \) were obtained, respectively. In terms of thermodynamic cycle and the lattice energy of IL calculated by Glasser’s lattice energy theory of ILs, the dissociation enthalpy of anion [FeCl4], ΔH dis≈5650 kJ mol−1, for the reaction: [FeCl4](g)→Fe3+(g)+4Cl(g), was estimated. It is shown that large hydration enthalpies of ions have been compensated by large the dissociation enthalpy of [FeCl4] anion, Δd H m, in dissolution process of the IL.

Keywords

enthalpy of solution ionic liquid isoperibol calorimeter Pitzer’s theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc., Chem. Commun., (1992) 965.Google Scholar
  2. 2.
    R. D. Rogers and K. S. Seddon, Ionic Liquids as Green Solvents: ACS Symposium series, Vol. 856, Amer. Chem. Soc., Washington DC 2003.Google Scholar
  3. 3.
    R. D. Rogers and K. S. Seddon, Ionic Liquids Industrial Applications for Green Chemistry, ACS Symposium series, Vol. 818, Amer. Chem. Soc., Washington DC 2002.Google Scholar
  4. 4.
    J.-Z. Yang, J. Tong and J.-B. Li, J. Solution Chem., 36 (2007) 573.CrossRefGoogle Scholar
  5. 5.
    J.-Z. Yang, X.-M. Lu, J.-S. Gui and W.-G. Xu, Green Chem., 6 (2004) 541.CrossRefGoogle Scholar
  6. 6.
    P. Wasserscheid and T. Welton, Ionic Liquid in Synthesis, Wiley-VCH, Weinheim 2003.Google Scholar
  7. 7.
    F. Endres, Chem. Phys. Chem., 3 (2002) 144.Google Scholar
  8. 8.
    M. S. Sitze, E. R. Schreiter, E. V. Patterson and R. G. Freedman, Inorg. Chem., 40 (2001) 2298.CrossRefGoogle Scholar
  9. 9.
    Q.-G. Zhang, W. Guan, J. Tong and X.-H. Jin, Chem. J. Chin. Univ., 27 (2006) 925 (in Chinese).Google Scholar
  10. 10.
    D. G. Archer, J. A. Widegren, D. R. Kirklin and J. W. Magee, J. Chem. Eng. Data, 50 (2005) 1484.CrossRefGoogle Scholar
  11. 11.
    W. Guan, H. Wang, L. Li and J.-Z. Yang, Thermochim. Acta, 437 (2005) 196.CrossRefGoogle Scholar
  12. 12.
    J.-Z. Yang, W. Guan, J. Tong, H. Wang and L. Li, J. Solution Chem., 35 (2006) 845.CrossRefGoogle Scholar
  13. 13.
    K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, Revised Ed., Ch. 3., CRC, Boca Raton 1991.Google Scholar
  14. 14.
    L. Glasser, Thermochim. Acta., 421 (2004) 87.CrossRefGoogle Scholar
  15. 15.
    J. S. Wilkes, J. A. Levisky and R. A. Wilson, Inorg. Chem., 21 (1982) 1263.CrossRefGoogle Scholar
  16. 16.
    Y. Y. Di, S. S. Qu, Y. Liu, Y. D. Wen, C. H. Tang and L. W. Li, Thermochim. Acta, 387 (2002) 115.CrossRefGoogle Scholar
  17. 17.
    H.-G. Yu, Y. Liu, Z. C. Tan, J. X. Dong, T. J Zou, X. M. Huang and S. S. Qu, Thermochim. Acta, 401 (2003) 217.CrossRefGoogle Scholar
  18. 18.
    W. Guan, L. Lei, H. Wang, W.-G. Xu and J.-Z. Yang, Chem. J. Chin. Univ., 27 (2006) 310 (in Chinese).Google Scholar
  19. 19.
    R. Rychly and V. Pekarek, J. Chem. Thermodyn., 9 (1977) 391.CrossRefGoogle Scholar
  20. 20.
    R. L. Montgomery, R. A. Melaugh, C. C. Lau, G. H. Meier, H. H. Chan and F. D. Rossini, J. Chem. Thermodyn., 9 (1977) 915.CrossRefGoogle Scholar
  21. 21.
    C. Wang, S. Song, W. Xiong and S. Qu, Acta Physico-Chimica Sinica, 7 (1991) 586 (in Chinese).Google Scholar
  22. 22.
    Z.-F. Zhang, H. Wang, D.-W. Fang and J.-Z. Yang, Chin. Univ., 28 (2006) 1310 (in Chinese).Google Scholar
  23. 23.
    Y. Marcus, Ion Solvation John Wiley, Chichester 1985, p. 107.Google Scholar
  24. 24.
    M. H. Hamedi and J.-P. E. Grolier, J. Therm. Anal. Cal., 89 (2007) 87.CrossRefGoogle Scholar
  25. 25.
    M. Fernandez-Tarrio, C. Alvarez-Lorenzo and A. Concheiro, J. Therm. Anal. Cal., 87 (2007) 171.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • W. Guan
    • 1
  • L. Li
    • 1
  • H. Wang
    • 1
  • J. Tong
    • 1
  • J. -Z. Yang
    • 1
  1. 1.Department of Chemistry, Laboratory of Green ChemistryLiaoning UniversityShenyangP.R. China

Personalised recommendations