Journal of Thermal Analysis and Calorimetry

, Volume 95, Issue 1, pp 221–227 | Cite as

Isothermal and non-isothermal crystallisation kinetics of pCBT and PBT

Polymers as studied by DSC
  • B. Lehmann
  • J. Karger-Kocsis


The crystallisation behaviour of in situ polymerised cyclic butylene terephthalates (pCBT) and poly(butylene terephthalate)s (PBT) were studied by differential scanning calorimetry (DSC) both under isothermal and non-isothermal conditions. The crystallisation was analysed by adopting the Avrami, Ozawa and Kissinger methods for the isothermal and non-isothermal crystallisations, respectively. An Avrami exponent n between 2 and 3 was found for the pCBTs whereas the exponent ranged between 3 and 4 for the PBTs. The Ozawa exponent m varied for all materials between 2 and 3. Differences in the crystallisation kinetics were also reflected in the related activation energy data.


Avrami cyclic butylene terephthalate (CBT, pCBT) isothermal crystallisation Kissinger non-isothermal crystallisation Ozawa poly(butylene terephthalate) (PBT) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Brunelle, Synthesis and Polymerization of Cyclic Polyester Oligomers, J. Scheirs, T. E. Long, Eds, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, John Wiley & Sons, Chichester 2003, pp. 117–142.Google Scholar
  2. 2.
    L. N. Song, M. Xiao, D. Shu, S. J. Wang and Y. Z. Meng, J. Mater. Sci., 42 (2007) 1156.CrossRefGoogle Scholar
  3. 3.
    Z. A. Mohd Ishak, K. G. Gatos and J. Karger-Kocsis, Polym. Eng. Sci., 46 (2006) 743.CrossRefGoogle Scholar
  4. 4.
    A. R. Tripathy, A. Elmoumni, H. H. Winter and W. J. MacKnight, Macromolecules, 38 (2005) 709.CrossRefGoogle Scholar
  5. 5.
    H. Parton and I. Verpoest, Polym. Composites, 26 (2005) 60.CrossRefGoogle Scholar
  6. 6.
    Z. A. Mohd Ishak, Y. W. Leong, M. Steeg and J. Karger-Kocsis, Compos. Sci. Technol., 67 (2007) 390.CrossRefGoogle Scholar
  7. 7.
    J. Karger-Kocsis, P. P. Shang, Z. A. Mohd Ishak and M. Rösch, eXPRESS Polym. Lett., 1 (2007) 60.CrossRefGoogle Scholar
  8. 8.
    Z. A. Mohd Ishak, P. P. Shang and J. Karger-Kocsis, J. Therm. Anal. Cal., 84 (2006) 637.CrossRefGoogle Scholar
  9. 9.
    H. Parton, J. Baets, P. Lipnik, B. Goderis, J. Devaux and I. Verpoest, Polymer, 46 (2005) 9871.CrossRefGoogle Scholar
  10. 10.
    M. Harsch, J. Karger-Kocsis and A. A. Apostolov, J. Appl. Polym. Sci., 108 (2008) 1455.CrossRefGoogle Scholar
  11. 11.
    M. Avrami, J. Chem. Phys., 7 (1939) 1103.CrossRefGoogle Scholar
  12. 12.
    M. Avrami, J. Chem. Phys., 9 (1941) 177.CrossRefGoogle Scholar
  13. 13.
    A. T. Lorenzo, M. L. Arnal, J. Albuerne and A. J. Mueller, Polymer Test., 26 (2007) 222.CrossRefGoogle Scholar
  14. 14.
    M. Hoffmann, H. Kroemer and R. Kuhn, Polymeranalytik, Georg Thieme Verlag, Stuttgart 1977.Google Scholar
  15. 15.
    J. G. Fatou, Encyclopedia of Polymer Science and Engineering, Wiley-Interscience, New York 1989, pp. 231–296.Google Scholar
  16. 16.
    J. H. Magill, Polymer Handbook, Vol. VI, John Wiley and Sons, New York 1989, pp. 279–286.Google Scholar
  17. 17.
    H. Parton, Characterisation of the in-situ Polymerisation Production Process for Continuous Fibre Reinforced Thermoplastics, Ph.D. thesis, Leuven, Belgium 2006.Google Scholar
  18. 18.
    T. Ozawa, Polymer, 12 (1971) 150.CrossRefGoogle Scholar
  19. 19.
    U. R. Evans, Trans. Faraday Soc., 41 (1945) 365.CrossRefGoogle Scholar
  20. 20.
    H. E. Kissinger, J. Res. Natl. Bur. Stand., 57 (1956) 217.Google Scholar
  21. 21.
    D. Wu, C. Zhou, X. Fan, D. Mao and Z. Bian, J. Appl. Polym. Sci., 99 (2006) 3257.CrossRefGoogle Scholar
  22. 22.
    J. Yu, D. Zhou, W. Chai, B. Lee, S. W. Lee, J. Yoon and M. Ree, Macromolecular Res., 11 (2003) 25.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Institute for Composite Materials (IVW GmbH)Technical University, KaiserslauternKaiserslauternGermany

Personalised recommendations