Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 1, pp 213–217 | Cite as

Thermal deamination kinetics of tris(ethylenediamine)nickel(II) sulphate in the solid-state

  • K. S. Rejitha
  • S. Mathew


Thermogravimetric techniques have been used to study the kinetics of thermal deamination of tris(ethylenediamine)nickel(II) sulphate. The complex was synthesized and characterized by various chemical and spectral techniques. Thermal decomposition studies were carried at different heating rates (5, 10, 15 and 20°C min−1) in dynamic air. The complex undergoes a four-stage decomposition pattern. The stages are not well resolved. Decomposition path can be interpreted as a two-stage deamination, and a two-stage decomposition. Reaction products at each stage were separated and identified by means of IR and XRD. The morphology of the complex and the residue were studied by means of SEM. Final residue of the decomposition was found to be crystalline NiO.

The deamination kinetics was studied using model-free isoconversional methods viz., Friedman, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods. It is observed that the activation energy varies with the extent of conversion; indicating the complex nature of the deamination reaction.


deamination kinetics nickel oxide thermal decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Wendlandt and J. P. Smith, Thermal Properties of Transition Metal Ammine Complexes, Elsevier, Amsterdam 1967.Google Scholar
  2. 2.
    S. Mathew, C. G. R. Nair and K. N. Ninan, Thermochim. Acta, 144 (1989) 33.CrossRefGoogle Scholar
  3. 3.
    C. G. R. Nair, S. Mathew and K. N. Ninan, Thermochim. Acta, 150 (1989) 63.CrossRefGoogle Scholar
  4. 4.
    W. Ferenc, A. Walków-Dziewulska and B. Bocian, J. Therm. Anal. Cal., 79 (2005) 145.CrossRefGoogle Scholar
  5. 5.
    N. T. Madhu, P. K. Radhakrishnan and W. Linert, J. Therm. Anal. Cal., 84 (2006) 607.CrossRefGoogle Scholar
  6. 6.
    P. M. Takahashi, A. V. G. Netto, A. E. Mauro and R. C. G. Frem, J. Therm. Anal. Cal., 79 (2005) 335.CrossRefGoogle Scholar
  7. 7.
    J. Kecht, S. Mintova and T. Bein, Chem. Mater., 19 (2007) 1203.CrossRefGoogle Scholar
  8. 8.
    M. Stefanescu, O. Stefanescu, M. Stoia and C. Lazau, J. Therm. Anal. Cal., 88 (2007) 27.CrossRefGoogle Scholar
  9. 9.
    Y. Guo, R. Weiss, R. Boese and M. Epple, Thermochim. Acta, 446 (2006) 101.CrossRefGoogle Scholar
  10. 10.
    P.S. Nair and G. D. Scholes, J. Mater. Chem., 16 (2006) 467.CrossRefGoogle Scholar
  11. 11.
    X. Li, X. Zhang, Z. Li and Y. Qian, Solid State Commun., 137 (2006) 581.CrossRefGoogle Scholar
  12. 12.
    H. L. Friedman, J. Polym. Sci., Part C, 6 (1963) 183.Google Scholar
  13. 13.
    J. H. Flynn and L. A. Wall, J. Polym. Sci., Part B, 4 (1996) 323.Google Scholar
  14. 14.
    T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.CrossRefGoogle Scholar
  15. 15.
    H. E. Kissinger, Anal. Chem., 29 (1957) 1702.CrossRefGoogle Scholar
  16. 16.
    T. Akahira and T. Sunose, Res. Rep. Chiba Inst. Technol., 16 (1971) 22.Google Scholar
  17. 17.
    E. G. Rochow, Ed., Inorganic Synthesis, Vol. VI, McGraw-Hill, New York 1960.Google Scholar
  18. 18.
    A. G. Vogel, Text Book of Quantitative Inorganic Analysis, Longmann, 4th Ed., 1978.Google Scholar
  19. 19.
    A. R. West, Solid State Chemistry and its Applications, 2nd Ed., John Wiley and Sons, Singapore 2003.Google Scholar
  20. 20.
    W. W. Wendlandt, Thermal Methods of Analysis, 3rd Ed., Wiley Intescience 1986.Google Scholar
  21. 21.
    S. Mitra, G. De and N. R. Chaudhury, Thermochim. Acta, 71 (1983) 107.CrossRefGoogle Scholar
  22. 22.
    N. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. 5th Ed., John Wiley and Sons, New York 1999.Google Scholar
  23. 23.
    M. Ul-Haque, C. N. Caughlan and K. Emerson, Inorg. Chem., 9 (1970) 2421.CrossRefGoogle Scholar
  24. 24.
    JCPDS and No: 23-1796.Google Scholar
  25. 25.
    JCPDS card No: 47-1049.Google Scholar
  26. 26.
    S. Vyazovkin and W. Linert, Int. J. Chem. Kinet., 27 (1995) 73.CrossRefGoogle Scholar
  27. 27.
    S. Vyazovkin, Int. J. Chem. Kinet., 28 (1996) 95.CrossRefGoogle Scholar
  28. 28.
    S. Vyazovkin and A. I. Lesnikovich, Thermochim. Acta, 165 (1990) 273.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations