Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 92, Issue 3, pp 939–944 | Cite as

Mechanism of thermal decomposition of zirconyl oxalate ZrOC2O4

Article

Abstract

Thermal decomposition of zirconyl oxalate hydrate was studied using DTA, TG, QMS and XRD techniques. It was shown that decomposition occurs in two stages: dehydration to anhydrous oxalate and next, decomposition to zircon oxide (zirconia). These steps are not well separated. We observed that significant amount of water are released during second stage of decomposition. Zircon dioxide is obtained in tetragonal form. Moreover, we consider some dependences between conditions of preparations zirconyl oxalate hydrate and some properties of solid product of its decomposition.

Although the reaction of thermal decomposition of zirconyl salts is generally utilized in technology, many aspects of this process are still not sufficiently explained. In our work, we present some new interesting observations concerning thermal behaviour of zirconyl oxalate.

Keywords

microstructure thermal decomposition zirconyl oxalate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X.-M. Liu, G. Q. Lu and Z.-F. Yan, Appl. Catal., A 279 (2005) 241.CrossRefGoogle Scholar
  2. 2.
    O. Vasylkiv and Y. Sakka, J. Am. Ceram. Soc., 83 (2000) 1309.Google Scholar
  3. 3.
    C. Zhang, Y. Liao, S. He, D. Sun and W. Chen, J. Non-Cryst. Solids, 351 (2005) 784 (letter to Editor).CrossRefGoogle Scholar
  4. 4.
    J. Etienne, A. Larbot, C. Guizard, L. Cot and J. A. Alary, J. Non-Cryst. Solids, 125 (1990) 224.CrossRefGoogle Scholar
  5. 5.
    A. K. Sharma and N. K. Kaushik, Thermochim. Acta, 83 (1985) 347.CrossRefGoogle Scholar
  6. 6.
    H. S. Potdar, S. B. Desphande, A. J. Patil, A. S. Desphande, Y. B. Khollam and S. K. Date, Mat. Chem. Phys., 65 (2000) 178.CrossRefGoogle Scholar
  7. 7.
    X. Ju, P. Huang, N. Xu and J. Shi, J. Membr. Sci., 166 (2000) 41–50.CrossRefGoogle Scholar
  8. 8.
    R. P. Agarwal and M. C. Naik, Anal. Chim. Acta, 24 (1961) 128.CrossRefGoogle Scholar
  9. 9.
    T. Gangadevi, M. Subba Rao and T. R. Narayana Kutty, Indian J. Chem., 19A (1980) 303.Google Scholar
  10. 10.
    A. V. Sharin, G. M. Zhabrowa, N. D. Topor and Y. M. Kushnarev, Chem. Abstr., 74 (1971) 18904k.Google Scholar
  11. 11.
    P. Pascal, Nouveau Traité Chim. Minér., 9 (1963) 733.Google Scholar
  12. 12.
    L. M. Zaitsev, Russ. J. Inorg. Chem., 9 (1964) 1279.Google Scholar
  13. 13.
    T. Gangadevi, M. Subba Rao and T. R. Narayanan Kutty, Ind. J. Chem., A19 (1980) 303.Google Scholar
  14. 14.
    S. A. A. Mansour, Termochim. Acta, 230 (1993) 243.CrossRefGoogle Scholar
  15. 15.
    P. W. M. Jacobs and A. R. Tario Kureishy, Trans. Faraday Soc., 58 (1962) 551.CrossRefGoogle Scholar
  16. 16.
    M. Maciejewski, E. Ingier-Stocka, W. D. Emmerich and A. Baiker, J. Therm. Anal. Cal., 60 (2000) 735.CrossRefGoogle Scholar
  17. 17.
    B. Małecka, E. Drożdż-Cieśla and A. Małecki, J. Therm. Anal. Cal., 68 (2002) 819.CrossRefGoogle Scholar
  18. 18.
    L. Montanaro, K. Belgacem, P. Llewellyn, F. Rouquerol, F. Merlo and P. Palmero, J. Therm. Anal. Cal., 88 (2007) 789.CrossRefGoogle Scholar
  19. 19.
    P. K. Sharma, V. V. Varadan and V. K. Varadan, J. Eur. Ceram. Soc., 23 (2003) 659.CrossRefGoogle Scholar
  20. 20.
    Z. Pędzich and K. Haberko, Ceram. Int., 20 (1994) 85.CrossRefGoogle Scholar
  21. 21.
    R. C. Gravie, J. Phys. Chem., 82 (1978) 218.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Ewa Drożdż-Cieśla
    • 1
  • A. Małecki
    • 1
  • Barbara Jajko
    • 1
  1. 1.Department of Inorganic ChemistryAGH University of Science and Technology, Faculty of Materials Science and CeramicsCracowPoland

Personalised recommendations