Journal of Thermal Analysis and Calorimetry

, Volume 92, Issue 3, pp 801–806 | Cite as

Thermal behavior of chitosan/natural rubber latex blends TG and DSC analysis

  • V. Rao
  • J. Johns


The thermal behavior of chitosan (CS)/natural rubber latex (NRL) blends has been studied by thermogravimetry (TG) and differential scanning calorimetry (DSC). Decomposition behavior of CS changes with the addition of NRL. The effect of blend composition on the amount of residue remaining at various temperatures has been studied. Activation energies of degradation have been calculated using Horowitz-Metzger equation. From the activation energy values, it is found that among the series of the blend compositions, CS15NRL85 exhibits better thermal stability. DSC studies reveals that the CS/NRL blends are thermodynamically incompatible. This is evident from the presence of two glass transitions, corresponding to CS and NRL phases in the blend.


chitosan natural rubber polymer blends thermoplastic elastomer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. P. Lizymol and S. Thomas, Polym. Degr. Stab., 41 (1993) 59.CrossRefGoogle Scholar
  2. 2.
    R. V. Rao, P. V. Ashokan and M. H. Shridhar, Polym. Degrad. Stab., 0 (2000) 1.Google Scholar
  3. 3.
    D. M. Price, D. J. Hourston and F. Dumont, Encyclopedia of Analytical Chemistry, pp. 8094–8105.Google Scholar
  4. 4.
    N. R. Choudhury, T. K. Chaki, A. Dutta and A. K. Bhowmick, Polymer, 30 (1989) 2047.CrossRefGoogle Scholar
  5. 5.
    M. H. Casimiro, J. P. Leal and M. H. Gil, Nuclear Instruments and Methods in Physics Research B, 236 (2005) 482.CrossRefGoogle Scholar
  6. 6.
    T. Wanjun, W. Cunxin and C. Donghua, Polym. Degrad. Stab., 87 (2005) 389.CrossRefGoogle Scholar
  7. 7.
    G. Cardenas and S. P. Miranda, Chil. Chem. Soc., 49 (2004) 291.Google Scholar
  8. 8.
    A. Tolaimate, J. Desbrieres, M. Rhazi and A. Alagui, Polymer, 44 (2003) 7939.CrossRefGoogle Scholar
  9. 9.
    B. F. Oliveira, M. H. A. Santana and M. I. Re, Brazilian J. Chem. Eng., 22 (2005) 353.Google Scholar
  10. 10.
    E. Yilmaz, D. Ozalp and O. Yilmaz, Int. J. Polym. Anal. Charact., 10 (2005) 329.CrossRefGoogle Scholar
  11. 11.
    C. Chen, L. Dong and M. K. Cheung, Eur. Polym. J., 41 (2005) 958.CrossRefGoogle Scholar
  12. 12.
    W. U. Yusong, S. Toshihiro, M. Shiro, D. Yanming, S. Takashi and I. Satoshi, J. Polym. Sci.: Part B, Polym. Phys., 42 (2004) 2747.CrossRefGoogle Scholar
  13. 13.
    A. J. F. Carvalho, A. E. Job, N. Alves, A. A. S Curvelo and A. Gandini, Carbohydr. Polym., 53 (2003) 95.CrossRefGoogle Scholar
  14. 14.
    E. Karavas, E. Georgarakis and D. Bikiaris, J. Therm. Anal. Cal., 84 (2006) 125.CrossRefGoogle Scholar
  15. 15.
    F. A. Lopez, A. L. R. Merce, F. J. Alguacil and A. Lopez-Delgado, J. Therm. Anal. Cal., OnlineFirst, DOI: 10. 1007/s10973-007-8321-3.Google Scholar
  16. 16.
    V. Rao and J. Johns, J. Appl. Polym. Sci., 107 (2008) 2217.CrossRefGoogle Scholar
  17. 17.
    A. P. Mathew, S. Pakrisamy and S. Thomas, Polym. Degrad. Stab., 72 (2001) 423.CrossRefGoogle Scholar
  18. 18.
    A. Pawlak and M. Mucha, Thermochim. Acta, 396 (2003) 153.CrossRefGoogle Scholar
  19. 19.
    K. Sakurai, T. Maegawa and T. Takahashi, Polymers, 41 (2000) 7051.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Materials ScienceMangalore UniversityMangalagangotriIndia

Personalised recommendations