Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 1, pp 281–287 | Cite as

Dielectric classification of D-and L-amino acids by thermal and analytical methods

  • M. E. Matthews
  • I. Atkinson
  • Lubaina Presswala
  • O. Najjar
  • Nadine Gerhardstein
  • R. Wei
  • Elizabeth Rye
  • A. T. Riga
Article

Abstract

Dielectric analysis (DEA), supported by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), powder X-ray diffraction analysis (PXRD) and photomicrography, reveal the chiral difference in the amino acids. The acids are classified as dielectric materials based on their structure, relating chirality to the vector sum of the average dipole moment, composed of the constant optical (electronic) and infra-red (atomic) polarizabilities, as well as dipole orientation. This study encompasses 14 L-and D-amino acid isomers. Physical properties recorded include AC electrical conductivity, charge transfer complexes, melting, recrystallization, amorphous and crystalline phases, and relaxation spectra, activation energies and polarization times for the electrical charging process.

Keywords

activation energy chiral recognition dielectric analysis (DEA) dipole orientation polarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Finn, Chirality, 14 (2002) 534.CrossRefGoogle Scholar
  2. 2.
    M. Koźbiał, J. Poznański, E. Utzig and J. Lipkowski, J. Therm. Anal. Cal., 83 (2006) 575.CrossRefGoogle Scholar
  3. 3.
    H. Frohlich, Theory of Dieletrics: Dieletric Constant and Dieletric Loss, Oxford Science Publications, Oxford 1986, pp. 104–121.Google Scholar
  4. 4.
    P. J. Haines Ed., Principles of Thermal Analysis and Calorimetry, RSC Paperbacks, Cambridge 2002, p. 99.Google Scholar
  5. 5.
    J. Cahoon, A. Riga and V. Lvovich, Materials Characterization by Dynamic and Modulated Thermal Analytical Techniques, ASTM STP 1402, American Society for Testing and Materials, West Conshohocken, PA 2001, pp. 157–173.Google Scholar
  6. 6.
    A. Riga, J. Cahoon and J. W. Pialet, Materials Characterization by Dynamic and Modulated Thermal Analytical Techniques, ASTM STP 1402, American Society for Testing and Materials, West Conshohocken, PA 2001, pp. 139–156.CrossRefGoogle Scholar
  7. 7.
    L. Presswala, M. E. Matthews, I. Atkinson, O. Najjar, N. Gerhardstein, J. Moran, R. Wei and A. Riga, Hydration of Crystalline Amino Acids with Bound and Unbound Water Revealed by Thermal Analysis, NATAS Conference, August 2007, Lansing, Michigan.Google Scholar
  8. 8.
    Netzsch Instruments, Inc., 37 North Ave., Burlington, MA 01803Google Scholar
  9. 9.
    TA Instruments, 109 Lukens Drive, New Castle, DE 19720Google Scholar
  10. 10.
    A. Riga and K. Alexander, Amer. Pharm. Rev., 6(45) (2005) 50.Google Scholar
  11. 11.
    H. Frohlich, Theory of Dieletrics: Dieletric Constant and Dieletric Loss, Oxford Science Publications, Oxford 1986, p. 122.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • M. E. Matthews
    • 1
  • I. Atkinson
    • 1
  • Lubaina Presswala
    • 1
  • O. Najjar
    • 1
  • Nadine Gerhardstein
    • 1
  • R. Wei
    • 1
  • Elizabeth Rye
    • 1
  • A. T. Riga
    • 1
  1. 1.Department of ChemistryCleveland State UniversityClevelandUSA

Personalised recommendations