Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 2, pp 641–649 | Cite as

Effect of particle size on pyrolysis characteristics of Elbistan lignite

  • K. E. Ozbas
Article

Abstract

In this study, the relationship between particle size and pyrolysis characteristics of Elbistan lignite was examined by using the thermogravimetric (TG/DTG) and differential thermal analysis (DTA) techniques. Lignite samples were separated into different size fractions. Experiments were conducted at non-isothermal conditions with a heating rate of 10°C min−1 under nitrogen atmosphere up to 900°C. Pyrolysis regions, maximum pyrolysis rates and characteristic peak temperatures were determined from TG/DTG curves. Thermogravimetric data were analyzed by a reaction rate model assuming first-order kinetics. Apparent activation energy (E) and Arrhenius constant (A r) of pyrolysis reaction of each particle size fraction were evaluated by applying Arrhenius kinetic model. The apparent activation energies in the essential pyrolysis region were calculated as 27.36 and 28.81 kJ mol−1 for the largest (−2360+2000 μm) and finest (−38 μm) particle sizes, respectively.

Keywords

kinetics lignite particle size pyrolysis thermal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. B. Anthony and J. B. Howard, AIChE J., 22 (1976) 625.CrossRefGoogle Scholar
  2. 2.
    A. F. Gaines and Y. Yürüm, Fuel, 55 (1976) 129.CrossRefGoogle Scholar
  3. 3.
    C. A. Lechner, M. E. Findley and A. I. Liapis, Can. J. Chem. Eng., 65 (1987) 487.CrossRefGoogle Scholar
  4. 4.
    J. Tomeczek and S. Gil, Fuel, 82 (2003) 285.CrossRefGoogle Scholar
  5. 5.
    Q. Liu, H. Hu, Q. Zhou, S. Zu and G. Chen, Fuel, 83 (2004) 713.CrossRefGoogle Scholar
  6. 6.
    H. Hu, Q. Zhou, S. Zhu, B. Meyer, S. Krzack and G. Chen, Fuel Process. Technol., 85 (2004) 849.CrossRefGoogle Scholar
  7. 7.
    A. G. Gürüz, ü. üçtepe and T. Durusoy, J. Anal. Appl. Pyrolysis, 71 (2004) 537.CrossRefGoogle Scholar
  8. 8.
    G. Migliavacca, E. Parodi, L. Bonfanti, T. Faravelli, S. Pierucci and E. Ranzi, Energy, 30 (2005) 1453.CrossRefGoogle Scholar
  9. 9.
    J. P. Elder and M. B. Harris, Fuel, 63 (1984) 262.CrossRefGoogle Scholar
  10. 10.
    A. Arenillas, F. Rubiera, C. Pevida and J. J. Pis, J. Anal. Appl. Pyrolysis, 65 (2002) 57.CrossRefGoogle Scholar
  11. 11.
    M. D. Casal, C. S. Canga, M. A. Diez, R. Alvarez and C. Barriocanal, J. Anal. Appl. Pyrol., 74 (2005) 96.CrossRefGoogle Scholar
  12. 12.
    J. M. Jones, M. Kubacki, K. Kubica, A. B. Ross and A. Williams, J. Anal. Appl. Pyrolysis, 74 (2005) 502.CrossRefGoogle Scholar
  13. 13.
    C. L. Sun, Y. Q. Xiong, Q. X. Liu and M. Y. Zhang, Fuel, 76 (1997) 639.CrossRefGoogle Scholar
  14. 14.
    J. A. Caballero and J. A. Conesa, J. Anal. Appl. Pyrolysis, 73 (2005) 85.CrossRefGoogle Scholar
  15. 15.
    D. Borah, M. Barua and M. K. Baruah, Fuel Process. Technol., 86 (2005) 977.CrossRefGoogle Scholar
  16. 16.
    H. B. Vuthaluru, Fuel Process. Technol., 85 (2003) 141.CrossRefGoogle Scholar
  17. 17.
    S. K. Janikowski and V. I. Stenberg, Fuel, 68 (1989) 95.CrossRefGoogle Scholar
  18. 18.
    H. Haykiri, S. Kucukbayrak and G. Okten, Fuel Sci. Tech. Int., 11 (1993) 1611.Google Scholar
  19. 19.
    A. Mianowski and T. Radko, Fuel, 72 (1993) 1537.CrossRefGoogle Scholar
  20. 20.
    C. Rai and D. Q. Tran, Fuel, 58 (1979) 603.CrossRefGoogle Scholar
  21. 21.
    D. Merrick, Fuel, 62 (1983) 534.CrossRefGoogle Scholar
  22. 22.
    T. Liliedahl and K. Sjostorm, AIChE J., 40 (1994) 1515.CrossRefGoogle Scholar
  23. 23.
    S. Porada, Fuel, 83 (2004) 1191.CrossRefGoogle Scholar
  24. 24.
    D. Vamvuka, E. Kakaras, E. Kastanaki and P. Grammelis, Fuel, 82 (2003) 1949.CrossRefGoogle Scholar
  25. 25.
    H. B. Vuthaluru, Biosour. Technol., 92 (2004) 187.CrossRefGoogle Scholar
  26. 26.
    Y. Güldoğan, T. Bozdemir and T. Durusoy, Energy Sources, 23 (2001) 393.CrossRefGoogle Scholar
  27. 27.
    Y. Güldoğan, T. Durusoy and T. Bozdemir, Energy Sources, 24 (2002) 753.CrossRefGoogle Scholar
  28. 28.
    M. V. Kök, E. Ozbas, C. Hicyilmaz and O. Karacan, Thermochim. Acta, 302 (1997) 125.CrossRefGoogle Scholar
  29. 29.
    K. E. Ozbas, M. V. Kök and C. Hicyilmaz, J. Therm. Anal. Cal., 69 (2002) 541.CrossRefGoogle Scholar
  30. 30.
    S. Yağmur and T. Durusoy, J. Therm. Anal. Cal., 86 (2006) 479.CrossRefGoogle Scholar
  31. 31.
    A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.CrossRefGoogle Scholar
  32. 32.
    M. Z. Duz, Y. Tonbul, A. Baysal, O. Akba, A. Saydut and C. Hamamci, J. Therm. Anal. Cal., 81 (2005) 395.CrossRefGoogle Scholar
  33. 33.
    M. V. Kök, J. Therm. Anal. Cal., 79 (2005) 175.CrossRefGoogle Scholar
  34. 34.
    I. Y. Elbeyli and S. Piskin, J. Therm. Anal. Cal., 83 (2006), 721.CrossRefGoogle Scholar
  35. 35.
    R. W. Mickelson and I. N. Einhorn, Thermochim. Acta, 1 (1970) 147.CrossRefGoogle Scholar
  36. 36.
    K. Rajeshwar, Thermochim. Acta, 45 (1981) 253.CrossRefGoogle Scholar
  37. 37.
    E. House, Thermochim. Acta, 57 (1982) 47.CrossRefGoogle Scholar
  38. 38.
    L. Reich and S. S. Stivala, Thermochim. Acta, 24 (1978) 9.CrossRefGoogle Scholar
  39. 39.
    H. Sis, J. Therm. Anal. Cal., 88 (2007) 863.CrossRefGoogle Scholar
  40. 40.
    Y. Güldoğan, V. Evren, T. Durusoy and T. Bozdemir, Energy Sources, 23 (2001) 337.CrossRefGoogle Scholar
  41. 41.
    J. M. Encinar, F. J. Beltran, A. Bernalte, A. Ramiro and J. F. Gozalez, Biomass Bioenergy, 11 (1996) 397.CrossRefGoogle Scholar
  42. 42.
    A. W. Scaroni, P. L. Walker and R. H. Essenhigh, Fuel, 60 (1981) 71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Mining EngineeringInonu UniversityMalatyaTurkey

Personalised recommendations