Effect of water content on enthalpic relaxations in porcine septal cartilage

  • Y. Chae
  • D. Protsenko
  • E. J. Lavernia
  • B. J. F. Wong
Regular Papers Bio/Life Sciences/Food


Cartilage thermoforming is an emerging surgical technology which uses heat to accelerate stress relaxation in mechanically deformed tissue specimens. Heat induced shape change in cartilage is associated with complex thermo-mechanical behavior of which the mechanisms are still a subject of debate. Differential scanning calorimetry (DSC) was used to characterize the threshold temperatures and enthalpies in cartilage as a function of water content. The DSC identified two enthalpic events in porcine nasal septal cartilage, which depend on the water content. The change in the water content of cartilage impacts the interactions between matrix macromolecules and water molecules, which may be associated with a bound-free water transformation (reversible process) and a denaturation of cartilage (irreversible process).


cartilage cartilage reshaping enthalpic relaxation nasal septum thermal transition threshold temperature TMDSC 


  1. 1.
    E. Helidonis, E. Sobol, G. Kavvalos, J. Bizakis, P. Christodoulou, G. Velegrakis, J. Segas and V. Bagratashvili, Am. J. Otolaryngol., 14 (1993) 410.CrossRefGoogle Scholar
  2. 2.
    V. Bagratashvili, E. Sobol, A. Sviridov, V. Popov, A. Omel’chenko and S. Howdle, J. Biomech., 30 (1997) 813.CrossRefGoogle Scholar
  3. 3.
    E. Sobol, A. Sviridov, A. Omeltchenko, V. Bagratashvili, M. Kitai, S. Harding, N. Jones, K. Jumel, M. Mertig, W. Pompe, Y. Ovchinnikov, A. Shekhter and V. Svistushkin, Biotech. Gen. Eng. Rev., 17 (2000) 539.Google Scholar
  4. 4.
    E. Sobol, M. Kitai, N. Jones, A. Sviridov, T. Milner and B. Wong, Proc. SPIE, 3254 (1998) 54.CrossRefGoogle Scholar
  5. 5.
    E. Sobol, A. Sviridov, A. Omel’Chenko, V. Bagratashvili, N. Bagratashvili and V. Popov, Proc. SPIE, 2975 (1997) 310.CrossRefGoogle Scholar
  6. 6.
    S. Nikolaeva, K. Chkhol, V. Bykov, A. Roshchina, L. Iakovleva, O. Koroleva, N. Omel’ianenko and L. Rebrov, Vopr. Med. Khim., 46 (2000) 581.Google Scholar
  7. 7.
    K. Chhol, V. Bykov, S. Nikolaeva, G. Rebrova, A. Roshchina, N. Rumiantseva, L. Iakovleva, O. Koroleva and L. Rebrov, Vopr. Med. Khim., 47 (2001) 498.Google Scholar
  8. 8.
    D. Elliott, D. Narmoneva and L. Setton, J. Biomech. Eng., 124 (2002) 223.CrossRefGoogle Scholar
  9. 9.
    D. Studer, M. Chiquet and E. Hunziker, J. Str. Bio., 117 (1996) 81.CrossRefGoogle Scholar
  10. 10.
    A. Rochdi, L. Foucat and J. Renou, Biopoly, 50 (1999) 690.CrossRefGoogle Scholar
  11. 11.
    P. Lattanzio, K. Marshall, A. Damyanovich and H. Peemoeller, Magn. Reson. Med., 44 (2000) 840.CrossRefGoogle Scholar
  12. 12.
    P. Than, I. Doman and D. Lõrinczy, Thermochim. Acta, 415 (2004) 83.CrossRefGoogle Scholar
  13. 13.
    G. Sohár, E. Pallagi, P. Szabó-Révész and K. Tóth, J. Therm. Anal. Cal., 89 (2007) 853.CrossRefGoogle Scholar
  14. 14.
    T. Sillinger, P. Than, B. Kocsis and D. Lõrinczy, J. Therm. Anal. Cal., 82 (2005) 221.CrossRefGoogle Scholar
  15. 15.
    P. Than and L. Kereskai, J. Therm. Anal. Cal., 82 (2005) 213.CrossRefGoogle Scholar
  16. 16.
    N. Ignat’eva, V. Lunin, A. Maiorova, S. Mudretsova, V. Bagratashvili, E. Sobol and A. Sviridov, Mendeleev Commun., 6 (2000) 207.Google Scholar
  17. 17.
    N. Ignat’eva, V. Lunin, S. Averkiev, A. Maiorova, V. Bagratashvili and E. Sobol, Thermochim. Acta., 422 (2004) 43.CrossRefGoogle Scholar
  18. 18.
    B. Wong, T. Milner, H. Kim, J. Nelson and E. Sobol, J. Biomed. Optics, 3 (1998) 409.CrossRefGoogle Scholar
  19. 19.
    Y. Chae, G. Aguilar, E. Lavernia and B. Wong, Lasers Surg. Med., 32 (2003) 271.CrossRefGoogle Scholar
  20. 20.
    B. Wong, T. Milner, H. Kim, S. Telenkov, C. Chew, E. Sobol and J. Nelson, IEEE J. Selec. Top. Quan. Elec., 5 (1999) 1095.CrossRefGoogle Scholar
  21. 21.
    B. Wong, T. Milner, H. Kim, J. Nelson and E. Sobol, J. Biomed. Opt., 3 (1998) 409.CrossRefGoogle Scholar
  22. 22.
    K. Chao, M. Burden and B. Wong, Proc. SPIE, 4257 (2001) 247.CrossRefGoogle Scholar
  23. 23.
    S. Diaz-Valdes, E. Lavernia and B. Wong, Proc. SPIE, 4257 (2001) 192.CrossRefGoogle Scholar
  24. 24.
    M. Gaon, K. Ho and B. Wong, Lasers Med. Sci., 18 (2003) 148.CrossRefGoogle Scholar
  25. 25.
    C. Miles and M. Ghelashvili, Biophys. J., 76 (1999) 3243.CrossRefGoogle Scholar
  26. 26.
    C. Miles and A. Bailey, Micron., 32 (2001) 325.CrossRefGoogle Scholar
  27. 27.
    G. Sharimanov Iu, L. Buishvili and G. Mrevlishvili, Biofizika., 24 (1979) 606.Google Scholar
  28. 28.
    M. Luescher, M. Ruegg and P. Schindler, Biopolym., 13 (1974) 2489.CrossRefGoogle Scholar
  29. 29.
    M. Pineri, M. Escoubes and G. Roche, Biopolym., 17 (1978) 2799.CrossRefGoogle Scholar
  30. 30.
    A. Jamieson, J. Blackwell, H. Reihania, H. Ohono and R. Gupta, Carbohydr. Res., 160 (1987) 329.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Y. Chae
    • 1
  • D. Protsenko
    • 1
  • E. J. Lavernia
    • 2
  • B. J. F. Wong
    • 3
  1. 1.The Beckman Laser InstituteIrvineUSA
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of California, DavisDavisUSA
  3. 3.The Beckman Laser Institute, Department of Otolaryngology- Head and Neck Surgery, Department of Biomedical EngineeringUniversity of California, IrvineIrvineUSA

Personalised recommendations