Journal of Thermal Analysis and Calorimetry

, Volume 92, Issue 1, pp 129–135 | Cite as

Qualitative and quantitative characterization of Brazilian natural and organophilic clays by thermal analysis



Differential thermal analysis (DTA) was the first thermal analysis technique used to qualitatively characterize natural clays and respective curves has been used since more than 60 years as their ‘fingerprint’. With the development of microprocessed equipments in the last decades, derivative thermogravimetric (DTG) curves also may be used for this purpose in some cases, which also may allow a quantitative characterization of clay components. TG and DTG curves are more indicated than DTA or DSC curves to identify and to better analyze the several decomposition steps of natural or synthetic organoclays. These questions are discussed in applications developed to characterize Brazilian kaolinitic clays, bentonites and organophilic clays.


clays DTA DTG organophilic clays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. H. Norton, Introduction to Ceramic Technology, Edgard Blücher and São Paulo Univ. Ed., São Paulo 1973, p. 19 (in Portuguese).Google Scholar
  2. 2.
    C. M. Earnest, Thermal Analysis of Clays, Minerals and Coal, Perkin Elmer, Norwalk 1984, p. 3.Google Scholar
  3. 3.
    M. Harmelin, La Thermo-Analyse, Presses Univ. de France, Paris 1968, p. 56.Google Scholar
  4. 4.
    P. Souza Santos, Science and Technology of Clays, Edgard Blücher, 2nd Ed., São Paulo 1989, Vol. 1, p. 277 (in Portuguese).Google Scholar
  5. 5.
    C. Duval, Inorganic Thermogravimetric Analysis, Elsevier, Houston 1953.Google Scholar
  6. 6.
    W. W. M. Wendlant, Interscience Publ. John Wiley and Sons, New York 1964, p. 179.Google Scholar
  7. 7.
    V. S. Ramachadran, Applications of Differential Thermal Analysis in Cement Chemistry, Chem. Publ. Co, Inc., New York 1969.Google Scholar
  8. 8.
    M. M. G. Vianna, J. Dweck, V. F. J. Kozievitch, F. R. Valenzuela-Diaz and P. M. Büchler, J. Therm. Anal. Cal., 82 (2005) 595.CrossRefGoogle Scholar
  9. 9.
    S. Yariv and H. Cross, Organoclay Complexes and Interactions, Marcel Dekker Inc., New York 2002, p. 334.Google Scholar
  10. 10.
    C. A. M. Baltar and A. B. Luz, Mineral Raw Materials for Oil Well Drilling, CETEM/UFPE Ed., Rio de Janeiro 2003, p. 29. (in Portuguese).Google Scholar
  11. 11.
    Engineered Materials Handbook — Vol. 4 Ceramics and Glasses, Samuel, J. Shneider (Techn. Chairm.) ASM International Handbook Committee, 1991, p. 754.Google Scholar
  12. 12.
    S. N. Monteriro and C. M. F. Vieira, Ceram. Intern., 30 (2004) 381.CrossRefGoogle Scholar
  13. 13.
    S. Yariv, Appl. Clay Sci., 24 (2004) 225.CrossRefGoogle Scholar
  14. 14.
    R. W. Soares, V. J. Menezes, M. V. A. Fonseca and J. Dweck, J. Thermal Anal., 49 (1997) 657.CrossRefGoogle Scholar
  15. 15.
    L. C. Morais, R. C. Valenzuela-Diaz, J. Dweck, P. M. Büchler, J. Therm. Anal. Cal., 82 (2005) 315.CrossRefGoogle Scholar
  16. 16.
    D. Ovadyahu, S. Yariv, I. Lapides and Y. Deutsch, J. Thermal Anal., 51 (1998) 431.Google Scholar
  17. 17.
    E. Abramova, I. Lapides and S. Yariv, J. Therm. Anal. Cal., 90 (2007) 99.CrossRefGoogle Scholar
  18. 18.
    D. Ovadyahu, I. Lapides and S Yariv, J. Therm. Anal. Cal., 87 (2007) 125.CrossRefGoogle Scholar
  19. 19.
    S. Yariv and I. Lapides, J. Therm. Anal. Cal., 80 (2005) 11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.School of Chemistry Bloco E do CT Sala E206Rio de Janeiro Federal UniversityRio de JaneiroBrazil

Personalised recommendations