Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 92, Issue 1, pp 259–262 | Cite as

Thermal behavior of some phenitoine pharmaceuticals

  • Gabriela Vlase
  • T. Vlase
  • N. Doca
Article

Abstract

The topic of the present work is to study the thermal behavior of phenitoine and pharmaceuticals by means of kinetic parameters determined in non-isothermal conditions.

The TG/DTG data were obtained at four heating rates. These data were processed by the following methods: Friedman (FR), Budrugeac-Segal (BS) and the modified non-parametric kinetics (Sempere-Nomen).

The main conclusions of the kinetic study are

The FR method is versatile, but the values of the kinetic parameters are not certain, especially by multistep processes.

The BS method offer a non-variant part of the activation energy, but the kinetic description is only formal.

The NPK method is able to discriminate between two or more steps of a complex process. In our case, there are a preponderant process (more than 70% of the explained variance).

By the NPK method there is a non-speculative separation of the temperature, respective conversion degree dependence of the reaction rate.

Keywords

non-isothermal kinetics phenitoin thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ferari, ’Thermal Analysis’, R. F. Schwenker and P. D. Garn, Eds, Academic Press, New York 1969, Vol. 1, p. 41.Google Scholar
  2. 2.
    T. Vlase, G. Vlase, M. Doca and N. Doca, J. Therm. Anal. Cal., 72 (2003) 597.CrossRefGoogle Scholar
  3. 3.
    T. Vlase, G. Vlase, A. Chiriac and N. Doca, J. Therm. Anal. Cal., 80 (2005) 87.CrossRefGoogle Scholar
  4. 4.
    T. Vlase, G. Vlase, M. Doca and N. Doca, J. Therm. Anal. Cal., 80 (2005) 207.CrossRefGoogle Scholar
  5. 5.
    T. Vlase, G. Vlase and N. Doca, J. Therm. Anal. Cal., 80 (2005) 425.CrossRefGoogle Scholar
  6. 6.
    T. Vlase, G. Vlase, N. Birta and N. Doca, J. Therm. Anal. Cal., 88 (2007) 631.CrossRefGoogle Scholar
  7. 7.
    H. L. Friedman, J. Polym. Sci., 6C (1965) 183.Google Scholar
  8. 8.
    P. Budrugeac and E. Segal, Int. J. Chem. Kinetic, 33 (2001) 564.CrossRefGoogle Scholar
  9. 9.
    P. Budrugeac and E. Segal, J. Therm. Anal. Cal., 64 (2001) 821.CrossRefGoogle Scholar
  10. 10.
    P. Budrugeac and E. Segal, J. Therm. Anal. Cal., 66 (2001) 557.CrossRefGoogle Scholar
  11. 11.
    T. Vlase, G. Vlase, N. Doca and C. Bolcu, J. Therm. Anal. Cal., 80 (2005) 59.CrossRefGoogle Scholar
  12. 12.
    A. Ioiţescu, G. Vlase, T. Vlase and N. Doca, J. Therm. Anal. Cal., 88 (2007) 121.CrossRefGoogle Scholar
  13. 13.
    R. Serra, R. Nomen and J. Sempere, J. Therm. Anal. Cal., 52 (1998) 933.CrossRefGoogle Scholar
  14. 14.
    R. Serra, J. Sempere and R. Nomen, Thermochim. Acta, 316 (1998) 37.CrossRefGoogle Scholar
  15. 15.
    J. Sempere, R. Nomen and R. Serra, J. Therm. Anal. Cal., 56 (1999) 843.CrossRefGoogle Scholar
  16. 16.
    M. E. Wall, A Practical Approach to Microarray Data Analysis, 9. 91–109, Kluwer-Norwel, MA 2003. LANL LA-UR-02.CrossRefGoogle Scholar
  17. 17.
    J. Ŝesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Research Center for Thermal Analysis in Environmental ProblemsWest University of TimişoaraTimişoaraRomania

Personalised recommendations