Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 94, Issue 1, pp 169–174 | Cite as

Thermal investigation of strontium acetate hemihydrate in nitrogen gas

  • Y. Duan
  • J. Li
  • X. Yang
  • X. -M. Cao
  • L. Hu
  • Z. -Y. Wang
  • Y. -W. Liu
  • C. -X. Wang
Article

Abstract

The thermal decomposition of strontium acetate hemihydrate has been studied by TG-DTA/DSC and TG coupled with Fourier transform infrared spectroscopy (FTIR) under non-isothermal conditions in nitrogen gas from ambient temperature to 600°C. The TG-DTA/DSC experiments indicate the decomposition goes mainly through two steps: the dehydration and the subsequent decomposition of anhydrous strontium acetate into strontium carbonate. TG-FTIR analysis of the evolved products from the non-oxidative thermal degradation indicates mainly the release of water, acetone and carbon dioxide. The model-free isoconversional methods are employed to calculate the E a of both steps at different conversion α from 0.1 to 0.9 with increment of 0.05. The relative constant apparent E a values during dehydration (0.5<α<0.9) of strontium acetate hemihydrate and decomposition of anhydrous strontium acetate (0.5<α<0.9) suggest that the simplex reactions involved in the corresponding thermal events. The most probable kinetic models during dehydration and decomposition have been estimated by means of the master plots method.

Keywords

master plots method model-free isoconversional method strontium acetate hemihydrate TG-FTIR thermal decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Gabal, Thermochim. Acta, 402 (2003) 199.CrossRefGoogle Scholar
  2. 2.
    B. Malecka, J. Therm. Anal. Cal., 78 (2004) 535.CrossRefGoogle Scholar
  3. 3.
    M. D. Judd, B. A. Plunkett and M. I. Pope, J. Thermal Anal., 6 (1974) 555.CrossRefGoogle Scholar
  4. 4.
    N. Koga and H. Tanaka, Solid State Ionics, 44 (1990) 1.CrossRefGoogle Scholar
  5. 5.
    M. Afzal, P. K. Butt and H. Ahmad, J. Thermal Anal., 37 (1991) 1015.CrossRefGoogle Scholar
  6. 6.
    M. C. Ball and L. Portwood, J. Thermal Anal., 41 (1994) 347.CrossRefGoogle Scholar
  7. 7.
    T. Arii and Y. Masuda, Thermochim. Acta, 342 (1999) 139.CrossRefGoogle Scholar
  8. 8.
    K. Zhang, J. Hong, G. Cao, D. Zhan, Y. Tao and C. Cong, Thermochim. Acta, 437 (2005) 145.CrossRefGoogle Scholar
  9. 9.
    A. G. B. de Cruz, J. L. Wardell and A. M. Rocco, Thermochim. Acta, 443 (2006) 217.CrossRefGoogle Scholar
  10. 10.
    V. Logvinenko, O. Polunina, Yu. Mikhailov, K. Mikhailov and B. Bokhonov, J. Therm. Anal. Cal. 90 (2007) 813.CrossRefGoogle Scholar
  11. 11.
    S. Materzaai, A. Gentili and R. Curini, Talanta, 68 (2006) 489.CrossRefGoogle Scholar
  12. 12.
    S. Materzaai, A. Gentili and R. Curini, Talanta, 69 (2006) 781.CrossRefGoogle Scholar
  13. 13.
    S. Vyazovkin and C. A. Wight, Annu. Rev. Phys. Chem., 48 (1997) 125.CrossRefGoogle Scholar
  14. 14.
    S. Vyazovkin, Int. Rev. Phys. Chem., 19 (2000) 45.CrossRefGoogle Scholar
  15. 15.
    S. Vyazovkin and C. A. Wight, Thermochim. Acta, 340–341 (1999) 53.CrossRefGoogle Scholar
  16. 16.
    S. Vyazovkin, Thermochim. Acta, 355 (2000) 155.CrossRefGoogle Scholar
  17. 17.
    X.-M. Cao, J. Therm. Anal. Cal., OnlineFirst DOI:10.1007/s10973-007-8574-X.Google Scholar
  18. 18.
    J. Li, Z. Wang, X. Yang, L. Hu, Y. Liu and C. Wang, Thermochim. Acta, 447 (2006) 147.CrossRefGoogle Scholar
  19. 19.
    W. Tang, Y. Liu, H. Zhang and C. Wang, Thermochim. Acta, 408 (2003) 39.CrossRefGoogle Scholar
  20. 20.
    NIST Chemistry Webbook standard reference database No. 69, June 2005 Release.Google Scholar
  21. 21.
    H. G. McAdie, J. Inorg. Nucl. Chem., 28 (1966) 2801.CrossRefGoogle Scholar
  22. 22.
    A. Borger, H. Dallmann and H. Langbein, Thermochim. Acta, 387 (2002) 141.CrossRefGoogle Scholar
  23. 23.
    F. J. Gotor, J. M. Criado, J. Malek and N. Koga, J. Phys. Chem. A, 104 (2000) 10777.CrossRefGoogle Scholar
  24. 24.
    V. Mamleev, S. Bourbigot, M. L. Bras, S. Duquesne and J. Šesták, Phys. Chem. Chem. Phys., 2 (2000) 4708.CrossRefGoogle Scholar
  25. 25.
    N. Koga and H. Tanaka, Thermochim. Acta, 303 (1997) 69.CrossRefGoogle Scholar
  26. 26.
    R. L. Remmele, J. J. Zhang-van Enk, V. Dharmavaram, D. Balaban, M. Durst, A. Shoshitaishvili and H. Rand, J. Am. Chem. Soc., 127 (2005) 8328.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Y. Duan
    • 1
  • J. Li
    • 1
  • X. Yang
    • 1
  • X. -M. Cao
    • 1
  • L. Hu
    • 1
  • Z. -Y. Wang
    • 1
  • Y. -W. Liu
    • 1
    • 2
  • C. -X. Wang
    • 1
  1. 1.College of Chemistry and Molecular ScienceWuhan UniversityWuhanChina
  2. 2.College of Life SciencesWuhan UniversityWuhanChina

Personalised recommendations