Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 3, pp 841–848 | Cite as

Heat capacities and thermodynamic properties of CoPc and CoTMPP

  • S. J. Qiu
  • H. L. Chu
  • J. Zhang
  • Y. N. Qi
  • L. X. Sun
  • F. Xu


The low-temperature molar heat capacities of CoPc and CoTMPP were measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 223 to 413 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range for CoPc. However, a structural change was found to be nonreversible for CoTMPP in the temperature range of 368–403 K, which was further validated by the results of IR and XRD. The molar enthalpy ΔH m and entropy ΔS m of phase transition of the CoTMPP were determined to be 3.301 kJ mol−1 and 8.596 J K−1 mol−1, respectively. The thermodynamic parameters of CoPc and CoTMPP such as entropy and enthalpy relative to reference temperature 298.15 K were derived based on the above molar heat capacity data. Moreover, the thermal stability of these two compounds was further investigated through TG measurements. Three steps of mass loss were observed in the TG curve for CoPc and five steps for CoTMPP.


cobalt(II)phthalocyanine cobalt(II)tetramethoxyphenylporphyrin molar heat capacity TG TMDSC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Göpel, Synth. Met., 41 (1991) 1087.CrossRefGoogle Scholar
  2. 2.
    M. A. Diaz-Garcia, I. Ledoux, J. A. Duro, T. Torres, F. Agullo-Lopez and J. Zyss, J. Phys. Chem., 98 (1994) 8761.CrossRefGoogle Scholar
  3. 3.
    H. Eichhorn, D. Wohrle and D. Pressner, Liq. Cryst., 22 (1997) 643.CrossRefGoogle Scholar
  4. 4.
    D. Lelievre, M. A. Petit and J. Simon, Liq. Cryst., 4 (1989) 707.CrossRefGoogle Scholar
  5. 5.
    J. D. Wright, P. Roisin, G. P. Rigby, R. J. M. Nolte, M. J. Cook and S. C. Thorpe, Sens. Actutaors B, 13 (1993) 276.CrossRefGoogle Scholar
  6. 6.
    J. H. Zagal, Coord. Chem. Rev., 119 (1992) 89.CrossRefGoogle Scholar
  7. 7.
    P. Janda, N. Kobayashi, P. R. Auburn, H. Lam, C. C. Leznoff and A. B. P. Lever, Can. J. Chem., 67 (1989) 1109.CrossRefGoogle Scholar
  8. 8.
    N. Kobayashi and W. A. Nevin, Appl. Organomet. Chem., 10 (1996) 579.CrossRefGoogle Scholar
  9. 9.
    W. J. Todd, F. Bailly, J. Pavez, P. W. Faguy, R. P. Baldwin and R. M. Buchanan, J. Am. Chem. Soc., 120 (1998) 4887.CrossRefGoogle Scholar
  10. 10.
    M. K. Halbert and R. P. Baldwin, Anal. Chem., 57 (1985) 591.CrossRefGoogle Scholar
  11. 11.
    E. Karmann, D. Schlettwein and N. I. Jaeger, J. Electroanal. Chem., 405 (1996) 149.CrossRefGoogle Scholar
  12. 12.
    R. Zhou, F. Josse, W. Gopel, Z. Z. Ozturk and O. Bekarolu, Appl. Organomet. Chem., 10 (1996) 557.CrossRefGoogle Scholar
  13. 13.
    D. Wöhrle, L. Kreienhoop, G. Schnurpfeil, J. Elbe, B. Tennigkeit, S. Hiller and D. Schlettwein, J. Mater. Chem., 5 (1995) 1819.CrossRefGoogle Scholar
  14. 14.
    N. Toshima, T. Tominaga and S. Kawamura, B. Chem. Soc. Jpn., 69 (1996) 245.CrossRefGoogle Scholar
  15. 15.
    B. Lukas, J. Silver, D. R. Lovett and M. J. Cook, Chem. Phys. Lett., 241 (1995) 351.CrossRefGoogle Scholar
  16. 16.
    S. Yoshimoto, A. Tada, K. Suto and K. Itaya, J. Phys. Chem. B, 107 (2003) 5836.CrossRefGoogle Scholar
  17. 17.
    Y. H. Lu and R. G. Reddy, Electrochim. Acta, 52 (2007) 2562.CrossRefGoogle Scholar
  18. 18.
    X.H. Wei, X.H. Du, D.H. Chen and Z.P. Chen, Thermochim. Acta, 440 (2006) 181.CrossRefGoogle Scholar
  19. 19.
    R. Huszank and O. Horvath, Chem. Commun., (2005) 224.Google Scholar
  20. 20.
    S. Sathyanarayana and N. Munichandraiah, J. Appl. Electrochem., 11 (1981) 33.CrossRefGoogle Scholar
  21. 21.
    M. Maja, C. Orecchia, M. Strano, P. Tosco and M. Vanni, Electrochim. Acta, 46 (2000) 423.CrossRefGoogle Scholar
  22. 22.
    N.A. Savastenko, V. Brüser, M. Brüser, K. Anklam, S. Kutschera, H. Steffen and A. Schmuhl, J. Power Sources, 165 (2007) 24.CrossRefGoogle Scholar
  23. 23.
    M. Reading, D. Elliot and V. L. Hill, Proc. of the 21st North American Thermal Analysis Society Conference, (1992) 145.Google Scholar
  24. 24.
    B. Wunderlich, Y. Jin and A. Boller, Thermochim. Acta, 238 (1994) 277.CrossRefGoogle Scholar
  25. 25.
    R. L. Danley, Thermochim. Acta, 402 (2003) 91.Google Scholar
  26. 26.
    B. Wunderlich, J. Therm. Anal. Cal., 85 (2006) 179.CrossRefGoogle Scholar
  27. 27.
    S. Heidenreich, T. Langner and H. Rohm, J. Therm. Anal. Cal., 89 (2007) 815.CrossRefGoogle Scholar
  28. 28.
    Z. A. Mohd Ishak, P. P. Shang and J. Karger-Kocsis, J. Therm. Anal. Cal., 94 (2006) 637.CrossRefGoogle Scholar
  29. 29.
    M. Varma-Nair and B. Wunderlich, J. Therm. Anal. Cal., 46 (1996) 879.CrossRefGoogle Scholar
  30. 30.
    J. Majumdar, F. Cser, M. C. Jollands and R. A. Shanks, J. Therm. Anal. Cal., 78 (2004) 849.Google Scholar
  31. 31.
    B. Wunderlich, J. Therm. Anal. Cal., 48 (1997) 207.CrossRefGoogle Scholar
  32. 32.
    D. G. Archer, J. Phys. Chem. Ref. Data, 22 (1992) 1441.CrossRefGoogle Scholar
  33. 33.
    D. C. Ginnings and G. T. Furukawa, J. Am. Chem. Soc., 75 (1953) 522.CrossRefGoogle Scholar
  34. 34.
    P. J. Linstrom, W. G. Mallard, Eds, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, July 2001, p. 20899 ( Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • S. J. Qiu
    • 1
    • 2
  • H. L. Chu
    • 1
    • 2
  • J. Zhang
    • 1
    • 2
  • Y. N. Qi
    • 1
    • 2
  • L. X. Sun
    • 1
  • F. Xu
    • 1
  1. 1.Materials and Thermochemistry Laboratory, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP.R. China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations